Những câu hỏi liên quan
NH
Xem chi tiết
HM
4 tháng 3 2018 lúc 17:21

                       XONG RỒI ĐẤY BẠN

a) \(x^2-2x+2xy=3+4y\)

\(x^2-2x+2xy-4y=3\)

\(x\left(x-2\right)+2y\left(x-2\right)=3\)

\(\left(x-2\right)\left(x+2y\right)=3\)

\(\Rightarrow x-2;x+2y\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)Ta có bảng giá trị:

\(x-2\)\(1\)\(-1\)\(3\)\(-3\)
\(x+2y\)\(3\)\(-3\)\(1\)\(-1\)
\(x\)\(3\)\(1\)\(5\)\(-1\)
\(y\)\(0\)\(-2\)\(-2\)\(0\)

               Vậy, \(\left(x;y\right)\in\left\{\left(3;0\right);\left(1;-2\right);\left(5;-2\right)\left(-1;0\right)\right\}\)

b) \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)

             Ta có: \(\left|2x-3y\right|\ge0\)

                        \(\left|5y-7z\right|\ge0\)

                        \(\left|x^2-y^2-2z^2-45\right|\ge0\)

                  \(\Rightarrow\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|\ge0\)

            Mà đề cho \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)

               \(\Rightarrow\hept{\begin{cases}\left|2x-3y\right|=0\\\left|5y-7z\right|=0\\\left|x^2-y^2-2z^2-45\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\5y-7z=0\\x^2-y^2-2z^2-45=0\end{cases}}}\)

               \(\Rightarrow\hept{\begin{cases}2x=3y\\5y=7z\\x^2-y^2-2z^2=45\end{cases}\Rightarrow\hept{\begin{cases}10x=15y\\15y=21z\\x^2-y^2-2z^2=45\end{cases}}}\)

               \(\Rightarrow10x=15y=21z\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}\)và \(x^2-y^2-2z^2=45\)

                             Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

                           \(\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}=\frac{2z^2}{2\cdot10^2}=\frac{x^2-y^2-2z^2}{21^2-14^2-2\cdot10^2}\)

                                                                                        \(=\frac{45}{441-196-200}=1\)(vì \(x^2-y^2-2z^2=45\))

                 \(\Rightarrow\hept{\begin{cases}x^2=21^2\\y^2=14^2\\z^2=10^2\end{cases}}\Rightarrow\hept{\begin{cases}x=21\\y=14\\z=10\end{cases}}\)

                           Vậy, \(\left(x;y;z\right)=\left(21;14;10\right)\)

                                   

Bình luận (0)
NH
4 tháng 3 2018 lúc 18:13

cảm ơn bạn nha Huỳnh Phước Mạnh

Bình luận (0)
TH
Xem chi tiết
LT
29 tháng 9 2019 lúc 19:05

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{-z+3}{-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{56-5}{9}\)\(=\frac{17}{3}\)

\(\Rightarrow x=\frac{37}{3},y=19,z=\frac{77}{3}\)

Bình luận (0)
HN
29 tháng 9 2019 lúc 19:10

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)\(2x+3y-z=56\)

\(\Leftrightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4};2x+3y-z=56\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{56-2-6+3}{9}=\frac{51}{9}=\frac{17}{3}\)

\(\Leftrightarrow x=\frac{37}{3};y=19;z=\frac{77}{3}\)

Vậy \(x=\frac{37}{3};y=19;z=\frac{77}{3}\)

Bình luận (0)
QN
Xem chi tiết
ST
8 tháng 10 2016 lúc 20:24

\(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

Áp dụng t/c dãy tỉ số = nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{31}{30}}=-\frac{990}{31}\)

\(\frac{x}{\frac{1}{2}}=-\frac{990}{31}\Rightarrow x=-\frac{495}{31}\)

\(\frac{y}{\frac{1}{3}}=-\frac{990}{31}\Rightarrow y=-\frac{330}{31}\)

\(\frac{z}{\frac{1}{5}}=-\frac{990}{31}\Rightarrow z=-\frac{198}{31}\)

Vậy ...

Bình luận (0)
QN
Xem chi tiết
TL
8 tháng 10 2016 lúc 20:12

Có: \(2x=3y=5z\)

=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{-33}{31}\)

=> \(\begin{cases}x=-\frac{495}{31}\\y=-\frac{330}{31}\\z=-\frac{198}{31}\end{cases}\)

 

Bình luận (0)
KK
8 tháng 10 2016 lúc 20:13

a) 2x = 3y = 5z 

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số = nhau , ta có : 

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y+z}{3+5+2}=\frac{-33}{10}\)

=> x = 3.(-33/10) = -99/10 

     y = 5.(-33/10) = -165/10

     z = 2.(-33/10) = -66/10 

Bình luận (0)
TM
21 tháng 10 2017 lúc 22:11

cho mình hỏi này sao đưa về được dòng thứ 2 vậy

Bình luận (0)
HA
Xem chi tiết
NV
2 tháng 8 2017 lúc 22:11

x = 7 , y = 5

Bình luận (0)
PD
2 tháng 8 2017 lúc 23:27

ta có :xy-2x+3y=13

         xy+3y-2x=13

         y(x+3)-2x=13

         y(x+3)-2x+6-6=13

         y(x+3)-2(x+3)-6=13

         (x+3)(y-2)=13+6=19

\(\Rightarrow\left(x+3\right)\left(y-2\right)\inƯ\left(19\right)\)\(=\left(-19;19;1;-1\right)\)

X+319-191-1
Y-21-119-19
x16-21-2-4
y3121-17

      

Bình luận (0)
DT
25 tháng 1 2019 lúc 20:32

Mọi người ơi , giup mình câu này với

Cho a,b€ N*, thoả mãn M=(9a+11b).(5b+11a) chia hết cho 19 . Giải thích vi sao M chia hết cho 361

Bình luận (0)
TH
Xem chi tiết
H24
13 tháng 11 2021 lúc 21:34

\(7x-3xy+3y=19\)

\(\Rightarrow\left(7x-7\right)-\left(3xy-3y\right)=19-7\)

\(7\left(x-1\right)-3y\left(x-1\right)=12\)

\(\left(7-3y\right)\left(x-1\right)=12\)

\(\Rightarrow7-3y;x-1\in\text{Ư}\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Bạn tự lập bảng rồi làm nốt nhé ! 

Bình luận (0)
 Khách vãng lai đã xóa
LT
16 tháng 11 2021 lúc 13:48

Đúng cho mik 1 k nha

Bình luận (0)
 Khách vãng lai đã xóa
TH
13 tháng 11 2021 lúc 21:46
Cảm ơn rất nhiều
Bình luận (0)
 Khách vãng lai đã xóa
CU
Xem chi tiết
KS
7 tháng 3 2021 lúc 17:20

x.(y+3)-y=-2

\(\Rightarrow\)x.( y + 3 ) = y - 2 

\(\Rightarrow\)xy + 3x = y - 2

 \(\Rightarrow\) y( x - 1 ) + 3( x - 1 ) + 5 = 0 

\(\Rightarrow\)y( x - 1 ) + 3( x - 1 ) = -5

\(\Rightarrow\)( y + 3 )( x - 1 ) = -5

\(\Rightarrow\)( y + 3 )( x - 1 ) \(\in\)Ư(-5) = { \(\pm1;\pm5\)}

Ta có bảng sau :

y + 3    - 1   5   1   -5
x - 1    1   - 5   5    -1
 x     2   - 4    - 2    - 8
 y    - 4   2    6     0 
Bình luận (0)
 Khách vãng lai đã xóa
KO
Xem chi tiết
TN
3 tháng 10 2017 lúc 20:03

1) Ta có: x/6 = y/3 = z/3 và 2x - 3y + 3z = 21

Aps dụng tính chất của dãy tỉ số bằng nhau:

x/6 = y/3 = z/3 = 2x/12 = 3y/9 = 3z/9 = (2x-3y+3z)/ (12 - 9 + 9) = 21/12 = 7/4

=> x/6 = 7/4 => x= 21/2

y/3 = 7/4 -> y= 21/4

z/3 = 7/4 -> z= 21/4

Bình luận (0)
H24
3 tháng 10 2017 lúc 20:16

1) đề nó sao ý bạn , sao lại tìm z nữa lại 2/3 ?

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{-4}=\frac{4x}{4.2}=\frac{3y}{3.\left(-4\right)}=\frac{2z}{2.\left(-4\right)}=\frac{4x+3y+2z}{8+\left(-12\right)+\left(-8\right)}=\frac{1}{-12}=\frac{-1}{12}\)

\(\frac{x}{2}=\frac{-1}{12}\Rightarrow x=\frac{-1}{6}\)

\(\frac{y}{-3}=\frac{-1}{12}\Rightarrow y=\frac{1}{4}\)

\(\frac{z}{-4}=\frac{-1}{12}\Rightarrow z=\frac{1}{3}\)

Vậy x=-1/6 ; y=1/4 và z = 1/3

3) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-3}{5}\Rightarrow\frac{x+1+y+2+z-3}{3+4+5}=\frac{18+1+2-3}{12}=\frac{18}{12}=\frac{3}{2}\)

\(\frac{x+1}{3}=\frac{3}{2}\Rightarrow x=\frac{7}{2}\)

\(\frac{y+2}{4}=\frac{3}{2}\Rightarrow y=4\)

\(\frac{z-3}{5}=\frac{3}{2}\Rightarrow z=\frac{21}{2}\)

Vậy x=7/2 ; y=4 và z=21/2

4) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-\left(1+2+3\right)}{12}=\frac{24}{12}=2\)

\(\frac{x-1}{3}=2\Rightarrow x=7\)

\(\frac{y-2}{4}=2\Rightarrow y=10\)

\(\frac{z-3}{5}=2\Rightarrow z=13\)

Vậy x=7 ; y=10 và z=13

Bình luận (0)
NP
Xem chi tiết
KV
26 tháng 11 2018 lúc 21:36

\(x.y+2y+x=6\)

\(\Rightarrow y.\left(x+2\right)+\left(x+2\right)-2=6\)

\(\Rightarrow y.\left(x+2\right)+\left(x+2\right)=8\)

\(\Rightarrow\left(x+2\right).\left(y+1\right)=8\)                  

\(\Rightarrow\left(x+2\right).\left(y+1\right)\inƯ\left(8\right)=\left\{1;2;4;8\right\}\) mà : \(x+2\ge2\)

\(\Rightarrow\) \(x+2=2\Rightarrow x=0\)

         \(y+1=4\Rightarrow y=3\)

\(\Rightarrow x=0;y=3\)

Bình luận (0)