tìm số tự nhiên n (n thuộc N ) de : 4n +3 va 2n +3 nguyen to cung nhau
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tim STN n de cac so sau nguyen to cung nhau 4n+1 va 2n+3
Gọi \(ƯCLN\left(2n+3,4n+1\right)=d\)
Ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)
\(4n + 1− (4n + 6) = −5⋮d\)
Để 2n + 3 và 4n + 1 nguyên tố cùng nhau d = 1
Với 2n + 3 không chia hết cho 5 vì 2n + 3 có tận cùng khác 0 và 5.
2n có tận cùng khác 7 và 2; n có tận cùng khác 1 và 6
Với 4n + 1 không chia hết cho 5 vì 4n + 1 có tận cùng khác 0 và 5
4n có tận cùng khác 9 và 4, n có tận cùng khác 1 và 6
Vậy n có tận cùng khác 1 và 6.
tim dieu kien cua n de 4n +3 va 2n +3 la 2 so nguyen to cung nhau
4n+3 và 2n+3 là 2 số nguyên tố cùng nhau \(\Leftrightarrow\)n=1
tìm số tự nhien n de cac so sau la cac so nguyen to cung nhau :
a, 4n + 3 va 2n+3
b, Gọi d = ƯCLN(4n+3;2n+3)
=> (4n+3) ⋮ d; 2(2n+3) ⋮ d
=> [(4n+6) – (4n+3)] ⋮ d
=> 3 ⋮ d => d = {1;3}
Nếu d = 3 thì (4n+3) ⋮ 3 => [3(n+1)+n] ⋮ 3 => n ⋮ 3 => n = 3k
Vậy để 4n+3 và 2n+3 nguyên tố cùng nhau thì n ≠ 3k
1)n+1 va 3n+4 la nguyen to cung nhau
2)2n+3 va 4n+8 la 2 so nguyen to cung nhau
Gọi d là ƯC (n + 1; 3n + 4) Nên ta có :
n + 1 ⋮ d và 3n + 4 ⋮ d
<=> 3 (n + 1) ⋮ d và 3n + 4 ⋮ d
<=> 3n + 3 ⋮ d và 3n + 4 ⋮ d
=> (3n + 4) - (3n + 3) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC (n + 1; 3n + 4) = 1 nên n + 1 và 3n + 4 là NT cùng nhau ( dpcm )
Ý 2 tương tự
gọi ước chung lớn nhất của n+1 và 3n+4 là d
ta có n+1 chia hết cho d => 3(n+1) chia hết cho d => 3n+ 3 chia hết cho d
3n+4 chia hết cho d
=> 3n+4 - ( 3n + 3) chia hết cho d
=> 3n +4 - 3n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
vậy..............
gọi ước chung lớn nhất của ...............là d
ta có 2n + 3 chia hết cho d
=> 2(2n+3) chia hết cho d
=> 4n + 6 chia hết cho d
4n + 8 chia hết cho d
=> 4n + 8 - ( 4n + 6) chia hết cho d
=> 4n + 8 - 4n -6 chia hết cho d
=> 2 chia hết cho d
=> d = 1 hoặc d = 2
mà 2n +3 là số lẻ nên không chia hết cho 2
=> d = 1
vậy ...........
tim n thuoc N de 3n2 +2n+3 va 2n+1 nguyen to cung nhau
Tim stn n sao cho 2n+3 va 4n+1 la 2 so nguyen to cung nhau
Cho a, b la 2 so tu nhiên không nguyen to cung nhau va thoa man a=4n+3,b=5n+1(n thuoc N). Tìm UCLN(a, b)
Gọi ƯCLN (4n+3;5n+1) = d ( d thuộc N sao )
=> 4n+3 và 5n+1 đều chia hết cho d
=> 5.(4n+3) và 4.(5n+1) chia hết cho d
=> 20n+15 và 20n+4 đều chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1;11}
Mà a và b ko phải 2 số tự nhiên nguyên tố cùng nhau nên d khác 1
=> d = 11
=> ƯCLN (a,b) =11
Tk mk nha
Ta có; 4n+3=> 5.[4n+3]=>20n+15 Gọi UCLN(a, b) là d
5n+1=>4.[5n+1]=> 20n+4
=>d= [20n+15 ] - [ 20n+4] chia hết cho 11
=>d=11 [ vì a,b là 2 số thuộc N ko nguyên tố cùng nhau]
chung minh voi moi STN n cac so sau la 2 so nguyen to cung nhau
2n+3 va 4n+8
Ta thấy
3 ; 8 là 2 số nguyên tố cùng nhau
Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .
Các số có ước chung lớn nhất là 1 thì là số nguyên tố .
Ta thấy
3 ; 8 là 2 số nguyên tố cùng nhau
Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .
Các số có ước chung lớn nhất là 1 thì là số nguyên tố .
chung to n+1 va 4n+3 nguyen to cung nhau
gọi d là ƯCLN(n+1;4n+3).theo bài ra ta có:
n+1 chia hết cho d
=>4(n+1) chia hết cho d
=>4n+4 chia hết cho d
=>4n+4-4n-3=1 chia hết cho d
=>d=1
=>n+1;4n+3 nguyên tố cùng nhau
=>đpcm
Gọi d là ƯCLN(n+1;4n+3).theo bài ra ta có:
n+1 chia hết cho d
=>4(n+1) chia hết cho d
=>4n+4 chia hết cho d
=>4n+4-4n-3=1 chia hết cho d
=>d=1
=>n+1;4n+3 nguyên tố cùng nhau
=>đpcm