Độ dài hai đường chéo hình thoi là 16 cm và 12 cm. Độ dài cạnh của hình thoi đó là bao nhiêu
Hai đường chéo hình thoi có độ dài là 16 cm và 12 cm. Tính: Độ dài cạnh hình thoi
ABCD là hình thoi có O là giao điểm của hai đường chéo nên:
AO = OC = 6cm; OB = OD = 8cm
Trong tam giác vuông OAB, ta có:
A B 2 = O A 2 + O B 2 = 6 2 + 8 2 = 100
AB = 10 (cm)
Kẻ AH ⊥ CD (H ∈ CD)
Ta có: S A B C D = AH.CD ⇒ AH = S A B C D / CD = 96/10 = 9,6 (cm)
hai đường chéo hình thoi có độ dài 8 cm và 10 cm cạnh của độ dài hình thoi là bao nhiêu ?
Độ dài cạnh là \(\sqrt{41}\left(cm\right)\)
Cho hình thoi có độ dài hai đường chéo lần lượt là 12 cm và 9 cm. Một hình chữ nhật có độ dài hai cạnh là 12 cm và 9 cm. Khi đó ta có:
Diện tích hình thoi bằng bao nhiêu diện tích hình chữ nhật
Hai đường chéo của một hình thoi có độ dài là 16 cm và 12 cm
Tính :
a) Diện tích hình thoi
b) Độ dài cạnh hình thoi
c) Độ dàu đường cao hình thoi
Gọi hình thoi đó là ABCD
Hai đường chéo BD và AC cắt nhau và vuông góc tại O
Kẻ đường cao AH (H\(\in DC\))
a. SABCD=\(\dfrac{1}{2}.AC.BD=\dfrac{1}{2}.12.16=96\left(cm^2\right)\)
Vậy diện tích hình thoi đó là 96 cm2
b. Ta có: AO=OC=\(\dfrac{AC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
OD=OB=\(\dfrac{BD}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Xét \(\Delta DAO\) có \(\widehat{DOA}=90^o\)
=> OD2+AO2=AD2 (định lý Py-ta-go)
hay: 82+62=AD2
=> AD2=100
=> AD=10 (cm)
Vậy độ dài một cạnh của hình thoi đó là 10 cm
c. Ta có: SABCD=AH.DC
=> AH=\(\dfrac{S_{ABCD}}{DC}=\dfrac{96}{10}=9,6\left(cm\right)\)
Vậy độ dài đường cao của hình thoi đó là 9,6 cm
Hai đường chéo của một hình thoi có độ dài là 16 cm và 12 cm
Tính :
a) Diện tích hình thoi
b) Độ dài cạnh hình thoi
c) Độ dàu đường cao hình thoi
Gọi hình thoi đó là \(ABCD\)
Hai đường chéo BD và AC cắt nhau và vuông góc tại O
Kẻ đường cao AH \(\left(H\in DC\right)\)
a ) \(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.12.16=96\left(cm^2\right)\)
Vậy diện tích hình thoi đó là \(96cm^2\)
b ) Ta có : \(AO=OC=\frac{AC}{2}=\frac{12}{2}=6\left(cm\right)\)
\(OD=OB=\frac{BD}{2}=\frac{16}{2}=8\left(cm\right)\)
Xét \(\Delta DAO\)có \(\widehat{DOA}=90^0\)
\(\Rightarrow OD^2+AO^2=AD^2\)( định lí Py - ta - go )
Hay \(8^2+6^2=AD^2\)
\(\Rightarrow AD^2=100\)
\(\Rightarrow AD=10\left(cm\right)\)
Vậy độ dài một cạnh của hình thoi đó là 10 cm
c ) Ta có : \(S_{ABCD}=AH.DC\)
\(\Rightarrow AH=\frac{S_{ABCD}}{DC}=\frac{96}{10}=9,6\left(cm\right)\)
Vậy độ dài dduwowgf cao của hình thoi là 9,6 cm
Chúc bạn học tốt !!!
cho hình thoi ABCD gọi o là giao điểm hai đường chéo biết AB = 20 cm OA = 16 cm OB = 12 cm tính độ dài các cạnh và đường chéo của hình thoi
Vì ABCD là hình thoi nên \(AB=BC=CD=DA=20\left(cm\right)\)
Và AC cắt BD tại O nên O là trung điểm AC,BD
\(\Rightarrow AC=2AO=32\left(cm\right);BD=2OB=24\left(cm\right)\)
Cho hình thoi ABCD với O là giao điểm của hai đường chéo. Biết AB = 20 cm, OA = 16 cm, OB = 12 cm. Tính độ dài các cạnh và các đường chéo của hình thoi.
Gấp !!!!!!!!!!!!!!!!!!!!!!!!!!
OB = 12 cm => BD = 2.12 = 24 cm
OA = 16 cm => AC = 2.16 = 32 cm
AB = BC = CD = AD = 20 cm (hình thoi có 4 cạnh bằng nhau)
Hình thoi có độ dài hai đường chéo lần lượt là 16 cm và 12 cm. Diện tích của hình thoi là
A. 56
B. 192
C. 86
D. 96
Hai đường chéo hình thoi có độ dài là 16 cm và 12 cm. Tính: Diện tích hình thoi
Ta có: S A B C D = 1/2 AC.BD = 1/2 .12.16 = 96 ( c m 2 )