Những câu hỏi liên quan
CV
Xem chi tiết
NQ
8 tháng 6 2017 lúc 19:29

\(\left(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\right)y=\dfrac{49}{200}\)

\(\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+\dfrac{1}{3\cdot4}-\dfrac{1}{4\cdot5}+...+\dfrac{1}{98\cdot99}-\dfrac{1}{99\cdot100}\right)y=\dfrac{49}{200}\)

\(\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{99\cdot100}\right)y=\dfrac{49}{200}\)

\(\left(\dfrac{1}{4}-\dfrac{1}{19800}\right)y=\dfrac{49}{200}\)

\(\left(\dfrac{4950}{19800}-\dfrac{1}{19800}\right)y=\dfrac{49}{200}\)

\(\dfrac{4949}{19800}y=\dfrac{49}{200}\)

\(y=\dfrac{49}{200}:\dfrac{4949}{19800}\)

\(y=\dfrac{99}{101}\)

Vậy \(y=\dfrac{99}{101}\).

Bình luận (0)
ND
8 tháng 6 2017 lúc 18:09

\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\right)y=\dfrac{49}{200}\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)y=\dfrac{49}{200}\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)y=\dfrac{49}{200}\\ \Rightarrow\dfrac{4949}{9900}y=\dfrac{49}{100}\\ \Rightarrow y=\dfrac{99}{101}\)

Bình luận (0)
DM
7 tháng 2 2023 lúc 22:31

Chắc ko giòn đâu

Bình luận (0)
AH
Xem chi tiết
LA
11 tháng 8 2016 lúc 19:41

Ta có

Z = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100

2Z =  2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 2/98.99.100

2Z = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/98.99 - 1/99.100

2Z = 1/1.2 - 1/99.100

2Z = 4949/9900

=> Z = 4949/19800

=> 4949/19800 . x = 49/200

                           x = 49/200 : 4949/19800

                           x = 99/101

Vậy x = 99/101

Ủng hộ nha

Bình luận (0)
NL
Xem chi tiết
H24
1 tháng 2 2016 lúc 19:08

Dựa vào 2/n(n+1)(n+2)= 1/n(n+1) - 1/(n+1)(n+2)

Bình luận (0)
MH
Xem chi tiết
LH
30 tháng 3 2017 lúc 20:39

\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\right)x=-3\)

\(\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)x=-3\)

\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)x=-3\)

\(\dfrac{1}{2}.\dfrac{4949}{9900}x=-3\)

\(\dfrac{4949}{19800}x=-3\)

\(x=-3:\dfrac{4949}{19800}\)

\(x=-\dfrac{59400}{4949}\)

Bình luận (2)
NL
Xem chi tiết
KL
1 tháng 2 2016 lúc 18:52

 Minh moi hoc tieu hoc thoi

Bình luận (0)
VK
1 tháng 2 2016 lúc 18:53

11111111111111111111111111111111111

Bình luận (0)
BA
1 tháng 2 2016 lúc 18:55

4545645645656

tich nha

Bình luận (0)
TN
Xem chi tiết
NM
27 tháng 1 2017 lúc 14:52

Nhân cả hai vế với 2

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}=\frac{2}{x}\left(\frac{1}{1.2}-\frac{1}{99.100}\right).\)

Xét vế trái

\(VT=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\)

\(VT=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(VT=\frac{1}{1.2}-\frac{1}{99.100}\)

\(\Rightarrow\frac{2}{x}=1\Rightarrow x=2\)

Bình luận (0)
TN
27 tháng 1 2017 lúc 14:55

có đúng ko vậy bạn

Bình luận (0)
TT
Xem chi tiết
HG
2 tháng 8 2015 lúc 10:59

1/1.2.3 + 1/2.3.4 +....+1/98.99.100

= 1/2 . (3-1/1.2.3 + 4-2/2.3.4 +....+ 100-98/98.99.100)

= 1/2 . (3/1.2.3 -1/1.2.3 + 4/2.3.4 - 2/2.3.4 +.......+ 100/98.99.100 - 98/98.99.100)

= 1/2 . (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 +......+ 1/98.99 - 1/99.100)

= 1/2 . (1/2 - 1/9900)

= 1/2 . 4949/9900

= 4949/19800

Bình luận (0)
ET
Xem chi tiết
H24
17 tháng 5 2021 lúc 22:26

A=11.2.3+12.3.4+13.4.5+...+198.99.100=11.2−12.3+12.3−13.4+...+198.99−199.100=11.2−199.100=494919800

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
HN
20 tháng 4 2022 lúc 23:04

=1/1.2.3+1/2.3.4+1/3.4.5+............+1/98.99.100

 =12(11.2−12.3+12.3−13.4+...+198.99−199.100)

=12(12−19900)

=12⋅49499900

Bình luận (0)
HN
20 tháng 4 2022 lúc 23:05

cho mình xin lỗi vì đáp án mình gửi lên nó bị lỗi nhá

Bình luận (0)