.Hãy chứng minh 2n +5 chia hết cho 2n+3.Hãy chứng minh 2n+3 chia hết cho 2n+1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
b1.Cho AB = 2CD .Chứng minh rằng ABCD chia hết cho 67
b2.chứng minh N.(n+1).(2n+1) chia hết cho 2 và 3
b3. chứng minh rằng
a.4n - 5 chia hết cho 2n - 1
b.2.(2n - 1) -3 chia hết cho 2n -1
Bài 3:
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
b: =>-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
chứng minh 3n+4 + 3n+2+2n+3+2n+1 chia hết cho 5
3n+4+3n+2 + 2n+3 + 2n+1
= 3n.( 34 + 32) + 2n.( 23+2)
= 3n.90 + 2n.10
= 10.( 3n.9+2n.5)
vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
biết rằng số tự nhiên khác không n không chia hết cho 3. hãy chứng minh rằng: 3^2n +3^n+1 chia hết cho 13
Chứng minh rằng:
2^2n+1 + 3^2n+1 chia hết cho 5
Chứng minh rằng A=2^2n+1 + 3^2n+1 chia hết cho 5
Áp dụng t/c với n lẻ thì \(a^n+b^n\) chia hết cho a+b
Em không biết lớp 8 làm thế nào
Nhưng cách lớp 7 thì có thể làm:
2^2n+1 + 3^2n+1
= (2^2n).2 + (3^2n).3
=4^n.2 + 9^n.3
Nếu n lẻ:
4^n tận cùng 4 => 4^n.2 tận cùng 8
9^n tận cùng 9 => 9^n.3 tận cùng 7
vay 4^n.2+9^n.3= ....8+.....7=.....5 chia hết 5
Nếu n chẵn:
4^n tận cùng 6 => 4^n.2 tận cùng 2
9^n tận cùng 1 => 9^n.3 tận cùng 3
vay 4^n.2+9^n.3=....2+.....3=...5 chia hết cho 5
CHỨNG MINH RẰNG
A)342005-342004 chia hết cho 17
B)432004+432005 chia hết cho 11
C)273+95 chia hết cho 4
D)n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
a) Ta có: \(34^{2005}-34^{2004}\)
\(=17^{2005}\cdot2^{2005}-17^{2004}\cdot2^{2004}⋮17\)
b) Ta có: \(43^{2004}+43^{2005}\)
\(=43^{2004}\left(1+43\right)\)
\(=43^{2004}\cdot44⋮11\)
c) Ta có: \(27^3+9^5=3^9+3^{10}=3^9\left(1+3\right)=3^9\cdot4⋮4\)
d) Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n⋮5\)
d. Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=\) \(2n^2-3n-2^2-2n\)
\(=\) \(-5n\)
Vậy n ( 2n - 3 ) - 2n ( n + 1 ) \(⋮\) 5 với mọi số nguyên n
chứng minh
6^2n + 3^n+2 . 3^n chia hết cho 11
3012^93 - 1 chia hết cho 9
5^2n+1.2^n+2 + 3^n+2 . 2^2n+1 chia hết cho 19
2093^n - 803^n - 464^n - 261^n chia hết cho 271
ý 3 tớ không biết chia hết cho 9 hay là 19 ấy nhé