Những câu hỏi liên quan
NN
Xem chi tiết
LD
12 tháng 3 2016 lúc 15:03

x:19(dư 12) x=19n+12(1) (n là số tự nhiên)
x=19n+12 = 17n+(2n+12) mà x:17 dư 5  2n+7 chia hết cho 17
 n=5+17k(2) (k là số tự nhiên) 
Thay (2) vào (1)  x=19(5+17k)+12=323k+107
Trả lời: x=323k +107 (cho k =0,1,2,3,...)  x=107 ;430;753;1076 (thử chia cho 17;19 là biết đúng sai liền)

Bình luận (0)
NN
12 tháng 3 2016 lúc 12:24

giúp mk với nha

Bình luận (0)
HP
12 tháng 3 2016 lúc 15:48

Lê Minh Đức copy ở đâu vậy?( bài làm ko liên quan  mấy)

Bình luận (0)
H24
Xem chi tiết
AN
Xem chi tiết
NN
Xem chi tiết
TT
30 tháng 11 2018 lúc 21:53

Gọi tt là số tự nhiên cần tìm.

t:15t:15 dư 5⇒t=17m+55⇒t=17m+5

t:19t:19 dư 11⇒t=19n+1111⇒t=19n+11

Do đó:

t+216=17m+221⋮17t+216=17m+221⋮17

t+216=17n+2280⋮19t+216=17n+2280⋮19

⇒t+216⋮17⇒t+216⋮17 và ⋮19⋮19

Mà tt là số tự nhiên nhỏ nhất nên t+216t+216 là BCNN(17;19)BCNN(17;19)

BCNN(17;19)=323BCNN(17;19)=323

⇒t+216=323⇒t+216=323

⇒t=323−216=107⇒t=323−216=107

Vậy, số cần tìm là 107.

Bình luận (0)
YN
8 tháng 1 2019 lúc 20:48

bn trang lm dài và rối lắm

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
DA
2 tháng 1 2017 lúc 11:08

 Gọi a là số tự nhiên cần tìm. 
a chia 17 dư 5 => a = 17m + 5 
a chia 19 dư 12 => a = 19n + 12 
Do đó: 
a + 216 = 17m + 221 chia hết cho 17. 
a + 216 = 17n + 228 chia hết cho 19 
=> a + 216 chia hết cho 17 và chia hết cho 19. 
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. 
BCNN(17 , 19) = 17.19 = 323. 
=> a + 216 = 323 
=> a = 323 - 216 
Vậy a = 107. 
mk đưa ra cách giải đơn giản theo phương pháp sau để em áp dụng:  
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3. 
Giả sử x < y < z 
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho 
a + B(z) + r3 chia hết cho x, y, z 
Khi đó a + B(z) + r3 là BC(x, y, z)

Bình luận (0)
NH
2 tháng 1 2017 lúc 11:08

 Gọi a là số tự nhiên cần tìm. 
a chia 17 dư 5 => a = 17m + 5 
a chia 19 dư 12 => a = 19n + 12 
Do đó: 
a + 216 = 17m + 221 chia hết cho 17. 
a + 216 = 17n + 228 chia hết cho 19 
=> a + 216 chia hết cho 17 và chia hết cho 19. 
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. 
BCNN(17 , 19) = 17.19 = 323. 
=> a + 216 = 323 
=> a = 323 - 216 
Vậy a = 107. 
 

Bình luận (0)
H24
2 tháng 1 2017 lúc 11:14

216 lấy đâu ra?

Bình luận (0)
LQ
Xem chi tiết
LT
18 tháng 8 2021 lúc 12:32

Gọi a là số tự nhiên cần tìm.

a chia 17 dư 5

=> a = 17m + 5 a chia 19 dư 12

=> a = 19n + 12

Do đó: a + 216 = 17m + 221 chia hết cho 17.

a + 216 = 17n + 228 chia hết cho 19

=> a + 216 chia hết cho 17 và chia hết cho 19.

Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.

=> a + 216 = 323

=> a = 323 - 216

Vậy a = 107

Bình luận (0)
 Khách vãng lai đã xóa
FK
18 tháng 8 2021 lúc 12:32

Gọi a là số tự nhiên cần tìm.

a

chia 17 dư 5

=> a = 17m + 5 a chia 19 dư 12

=> a = 19n + 12

Do đó: a + 216 = 17m + 221 chia hết cho 17.

a + 216 = 17n + 228 chia hết cho 19

=> a + 216 chia hết cho 17 và chia hết cho 19.

Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.

=> a + 216 = 323

=> a = 323 - 216

Vậy a = 107

Bình luận (1)
 Khách vãng lai đã xóa
TN
Xem chi tiết

Gọi a là số tự nhiên cần tìm.

a chia 17 dư 5

=> a = 17m + 5 a chia 19 dư 12

=> a = 19n + 12

Do đó: a + 216 = 17m + 221 chia hết cho 17.

a + 216 = 17n + 228 chia hết cho 19

=> a + 216 chia hết cho 17 và chia hết cho 19.

Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.

=> a + 216 = 323

=> a = 323 - 216

Vậy a = 107

Bình luận (0)
 Khách vãng lai đã xóa
VP
Xem chi tiết
NT
5 tháng 11 2021 lúc 22:22

3: \(\left\{{}\begin{matrix}a-1\in\left\{15;30;45;...\right\}\\a-3\in\left\{4;8;12;...\right\}\end{matrix}\right.\Leftrightarrow a=31\)

Bình luận (0)