cho M= 1+3+3^2+3^3+......+3^118+3^119
cmr: M chia hết cho 13
Cho M= 1+3+3^2+3^3+..+3^118+3^119
Chứng minh rằng M chia hết cho 13
M=1+3+3^2+3^3+^3+...+3^118+3^119
=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)
=13+3^3(1+3+3^2)+...+3^117(1+3+3^2)
=13+3^3.13+..+3^117.13
=13(1+3^3+...+3^117) chia hết cho 13
Vậy Mchia hết cho 13
ai chơi truy kích thì kết bạn vs mình nha
rồi khi nào tạo phòng solo đao phong chibi với nhau 1 ván
ai chơi truy kích
kb với mình mình k cho mình chưa có bạn
Cho \(M=1+3+3^2+3^3+...+3^{117}+3^{118}+3^{119}\)
Chứng tỏ rằng M chia hết cho 13
M=1+3+3^2+......+3^117+3^118+3^119
M=3^0+3^1+3^2+......+3^117+3^118+3^119
M có số hạng là:
(119-0):1+1=120(số)
Vì 120 chia hết cho 3 nên ta chia dãy số M thành các nhóm,mỗi nhóm có 3 số hạng
Ta có:M=3^0+3^1+3^2+......+3^117+3^118+3^119
M=(3^0+3^1+3^2)+......+(3^117+3^118+3^119)
M=3^0.(1+3+3^2)+.......+3^117.(1+3+3^2)
M=3^0.13+......+3^117.13
M=13.(3^0+.....+3^117)
=>M chia hết cho 13
Đầu bài sai rồi bạn ơi vì tất cả các số sau số 1 đều chia hết cho 3 mà 1 chia 3 dư 1 nên M chia 3 dư 1
cho M=1+3+32+33+...+3118+3119. Chứng tỏ M chia hết cho 13.
bạn nào đúng mình tick ^_^
M=1+3+32+33+...+3118+3119
=(1+3+32)+(33+34+35)+...+(3117+3118+3119)
=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)
=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)
=13+33.13+...+3117.13
=13.1+33.13+...+3117.13
=13.(1+33+3117)
=> M chia hết cho 13
Cho biểu thức : M = 1+3+2+33+......+3118+3119
a, Thu gọn biểu thức M
b, Biểu thức M có chia hết cho 5 , 13 ko?
a) M = 1 + 3 + 32 + ... + 3119
=> 3M = 3 + 32 + ... + 3120
=> 3M - M = 3 + 32 + ... + 3120 - ( 1 + 3 + 32 + ... + 3119)
=> 2M = 3 + 32 + ... + 3120 - 1 - 3 - 32 - 3119
=> 2M = 3120 - 1
=> M = \(\frac{3^{120}-1}{2}\)
b) M = 1 + 3 + 32 + ... + 3119
=> M = (1+3+32+33)+...+(3116+3117+3118+3119)
=> M = 40 + ... + 3116.(1+3+32+33)
=> M = 40 + ... + 3116.40
=> M = 40.(1+...+3116) \(⋮\)5 => M \(⋮\)5.
M = 1 + 3 + 32 + ... + 3119
=> M = (1+3+32) + ... + (3117+3118+3119)
=> M = (1+3+32) + ... + 3117.(1+3+32)
=> M = 13 + ... + 3117.13
=> M = 13.(1+...+3117) \(⋮\)13 => M \(⋮\)13
\(M=1+3+3^2+...+3^{119}\)
\(\Rightarrow3M=3+3^2+3^3+...+3^{120}\)
\(\Rightarrow2M=3^{120}-1\)
\(\Rightarrow M=\frac{3^{120}-1}{2}\)
Cho biểu thức M=1+3+32+33+..........+3118+3119
a) Thu gọn biểu thức M
b) Cho biết biểu thức M có chia hết cho 5 và 13 không? Vì sao?
Bài 1 :
Cho A = \(1+3+3^2+....+3^{11}\) . Chứng minh rằng :
a) A chia hết cho 13 b) A chia hết cho 40
Bài 2 :
Cho C = \(3+3^2+3^3+3^4+......+3^{100}\) . Chứng minh rằng : C chia hết cho 40 .
Bài 3 :
Cho biểu thức : M = \(1+3+3^2+3^3+......+3^{118}+3^{119^{ }}\)
a) Thu gọn biểu thức M b) Biểu thức M có chia hết cho 5 , 13 không . Vì sao ?
Bài 4 :
Cho S = \(5+5^2+5^3+5^4+5^5+5^6+.......+5^{2012}\) . Chứng minh rằng S chia hết cho 65.
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
Cho biểu thức M=1+3+32+33+.............+3118+3119
a) Thu gọn biểu thức M
b) Biểu thức M có chia hết cho 5 và 13 không? Vì sao?
a) \(M=1+3+3^2+3^3+...+3^{119}\)
\(3M=3+3^2+3^3+3^4+...+3^{119}+3^{120}\)
\(3M-M=\left(3+3^2+3^3+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)
\(2M=3^{120}-1\)
\(M=\frac{3^{120}-1}{2}\)
b) \(M=1+3+3^2+3^3+...+3^{118}+3^{119}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{117}\right)\)chia hết cho \(13\).
\(M=1+3+3^2+3^3+...+3^{118}+3^{119}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(=40\left(1+3^4+...+3^{116}\right)\)chia hết cho \(5\).
m=1+3+3^2+3^2 +...+3^118+3^119
cho :n= 1/2^2 +1/3^2+1/4^2+...+1/2009^2+1/2010^2 chứng tỏ rằng a) m chia hết cho 13 b n<1
a)M=1+3+3^2+...+3^118+3^119
=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)
=1x(1+3+9)+3^3x(1+3+9)+...+3^117x(1+3+9)
=1x13+3^3x13+...+3^117x13
=13x(1+3^3+...+3^117)
Vậy M chia hết cho 13
a)M=1+3+3^2+...+3^118+3^119
M =(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)
M =1x(1+3+9)+3^3x(1+3+9)+...+3^117x(1+3+9)
M =1x13+3^3x13+...+3^117x13
M =13x(1+3^3+...+3^117)
Vậy M chia hết cho 13
Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng
B=3+3^2+3^3+...+3^118+3^119+3^120
CHỨNG MINH RẰNG B CHIA HẾT CHO 13
\(B=3+3^2+3^3+...+3^{118}+3^{119}+3^{120}\\ =\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\\ =3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\\ =\left(3+3^4+...+3^{118}\right).\left(1+3+3^2\right)\\ =\left(3+3^4+...+3^{118}\right).13⋮13\left(ĐPCM\right)\)