Bài 1: x^2+6y-y^2-9 Bài 2 a)x^2+5x-x(x-3) b)x^2(x-3)-x+3
Bài 1: Phân tích các đa thức sau thành nhân tử
1)3x(x-1)+5(x-1)
2)4x (x-2y)-8y (2y-x)
3)a^2 (x-1)+b^2 (1-x)
4)3x (x-a) +4a(a-x)
5)5x (x-y)^2 +10y^2(y-x)^2
6)3x(x-3)^2+9(3-x)^2
7)x(m-a)^2-y(a-m)^2
8)6y^2(x-1)^2+9y(1-x)^2
1) \(3x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(3x+5\right)\)
2) \(4x(x-2y)-8y(2y-x)\)
\(=4x\left(x-2y\right)+8y\left(x-2y\right)\)
\(=\left(4x+8y\right)\left(x-2y\right)\)
\(=4\left(x+2y\right)\left(x-2y\right)\)
3) \(a^2\left(x-1\right)+b^2\left(1-x\right)\)
\(=a^2\left(x-1\right)-b^2\left(x-1\right)\)
\(=\left(a^2-b^2\right)\left(x-1\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(x-1\right)\)
4) \(3x\left(x-a\right)+4a\left(a-x\right)\)
\(=3x\left(x-a\right)-4a\left(x-a\right)\)
\(=\left(x-a\right)\left(3x-4a\right)\)
5) \(5x\left(x-y\right)^2+10y^2\left(y-x\right)^2\)
\(=5x\left(x-y\right)^2+10y^2\left(x-y\right)^2\)
\(=\left(5x+10y^2\right)\left(x-y\right)^2\)
\(=5\left(x+2y^2\right)\left(x-y\right)^2\)
6) \(3x\left(x-3\right)^2+9\left(3-x\right)^2\)
\(=3x\left(x-3\right)^2+9\left(x-3\right)^2\)
\(=\left(3x+9\right)\left(x-3\right)^2\)
\(=3\left(x+3\right)\left(x-3\right)^2\)
7) \(x\left(m-a\right)^2-y\left(a-m\right)^2\)
\(=x\left(a-m\right)^2-y\left(a-m\right)^2\)
\(=\left(x-y\right)\left(a-m\right)^2\)
8) \(6y^2\left(x-1\right)^2+9y\left(1-x\right)^2\)
\(=6y^2\left(x-1\right)^2+9y\left(x-1\right)^2\)
\(=\left(6y^2+9x\right)\left(x-1\right)^2\)
\(=3\left(2y^2+3x\right)\left(x-1\right)^2\)
#Ayumu
Giúp mik vs ạ
Bài 1:Tìm x
a) (x-3)2-4=0
b) x2-2x=24
c) (2x-1)2+(x+3)2-5(x+2)(x-2)=0
d) (5x-1)2-(5x-4)(5x+4)=7
Bài 2 :Cho x+y=-9.Tính D=x2+2xy+y2-6x-6y-5
Bài 3:Tìm x,y biết
a)4x2+y2-4x+10y+26=0
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
Bài 2 :
\(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)
Thay x + y = -9 ta có :
\(\left(-9\right)^2-6\left(-9\right)-5=130\)
Bài 1.
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 - 22 = 0
<=> ( x - 3 - 2 )( x - 3 + 2 ) = 0
<=> ( x - 5 )( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) x2 - 2x = 24
<=> x2 - 2x - 24 = 0
<=> x2 + 4x - 6x - 24 = 0
<=> x( x + 4 ) - 6( x + 4 ) = 0
<=> ( x + 4 )( x - 6 ) = 0
<=> \(\orbr{\begin{cases}x+4=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
c) ( 2x - 1 )2 + ( x + 3 )2 - 5( x + 2 )( x - 2 ) = 0
<=> 4x2 - 4x + 1 + x2 + 6x + 9 - 5( x2 - 4 ) = 0
<=> 5x2 + 2x + 10 - 5x2 + 20 = 0
<=> 2x + 30 = 0
<=> 2x = -30
<=> x = -15
Bài 2.
D = x2 + 2xy + y2 - 6x - 6y - 5
= [ ( x2 + 2xy + y2 ) - 2x - 2y + 1 ] - 4x - 4y - 6
= [ ( x + y )2 - 2( x + y ) + 1 ] - 4( x + y ) - 6
= ( x + y - 1 )2 - 4( x + y ) - 6
Với x + y = -9
D = ( -9 - 1 )2 - 4.(-9) - 6
= 100 + 36 - 6
= 130
Bài 3.
4x2 + y2 - 4x + 10y + 26 = 0
<=> ( 4x2 - 4x + 1 ) + ( y2 + 10y + 25 ) = 0
<=> ( 2x - 1 )2 + ( y + 5 )2 = 0
<=> \(\hept{\begin{cases}2x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-5\end{cases}}\)
Bài 1:
a, (x+1)^2-(x-1)^2-3(x+1)(x-1)
b, 5(x+2)(x-2)-1/2(6-8x)^2+17
Bài 2: Tìm x
a, 25x^2-9=0
b, (x+4)-(x+1)(x-1)=16
c, (2x-1)^2 +(x+3)^2-5(x+7)(x-7)=0
Bài 3: Tìm GTNN
A= x^2+5X=7
Bài 4 : Tìm GTLN
B= 6x -x^2-5
Bài 5:Cho x-y=-5. Tính giá trị của N=(x-y)^3-x^2+2xy-y^2
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3
Bài 1: Phân tích các đa thức sau thành nhân tử:
a. 2. ( x + 5 ) - x2 - 5x
b. y2 - 6y + 9 + z2
c. a3 - a2x - ay + xy
Bài 2: Tìm x;
a. x2 - 6x = 0
b. x3 - 2x2 + x = 0
BÀI 1.
a. 2.( x+5 ) - x2 -5x = 2. (x+5) - x .(x +5 )
=( x+5 ). (2 - x)
b. y2 - 6y +9 +z2 =( y2 -6y +9 )+ z2
=(y - 3)2 +z2
c. a3 - a2x- ay +xy =( a3 - a2x) - (ay - xy )
=a2 (a-x) - y (a -x)
=(a - x) . (a2 - y)
bài 2
a. x2 - 6x =0
x( x -6 ) =0
Suy ra : x= 0 hoặc x- 6 =0
1) x =0
2) x -6 =0 suy ra x=6
vậy x =0 ; x= 6
b. x3 -2x2 +x =0
x . ( x2 - 2x +1 ) =0
x . ( x -1 )2 =0
suy ra : x = 0 hoặc (x - 1)2 =0
1) x = 0
2) (x - 1)2 = 0 suy ra x -1 = 0
suy ra : x= 1
vậy x = 0 ; x = 1
Tick cho mk nhé!!!!!!!
Bài 1: Tìm x biết:
a) (x - 1)(x2 + x + 1) - x(x + 3)(x - 3) = 15
b) (x - 2)3 - (x - 3)(x2 + 3x + 9) + (6x + 1)2 = 18
c) 6(x + 2)2 - 2(x + 2)3 + 2(x - 2)(x2 + 2x + 4) = 1
Bài 2: Tìm x, y biết:
a) x2 + 4y2 + 6y - 12y +18 = 0
b) 5x2 + 9y2 - 12xy - 6x + 9 = 0
c) 2x2 + 2y2 + 2xy - 10x - 8y + 41 = 0
Bài 1 :
\(a)\)\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+3\right)\left(x-3\right)=15\)
\(\Leftrightarrow\)\(x^3-1-x\left(x^2-3^2\right)=15\)
\(\Leftrightarrow\)\(x^3-1-x^3+9x=15\)
\(\Leftrightarrow\)\(9x=16\)
\(\Leftrightarrow\)\(x=\frac{16}{9}\)
Vậy \(x=\frac{16}{9}\)
Chúc bạn học tốt ~
Bài 1 : Thực hiện phép tính
a) 3x (x^2 - 7x + 9)
b) (x+3y) (x^2 - 2xy + y)
c) (5x - 2y) (x^2 - xy + 1)
Bài 2 : Tìm x , biết
a) x (5x - 2y) + 2x ( x - 1) = 15
b) x^2 - 25x = 0
c) 5x (x - 1) = x - 1
Bài 3 : Phân tích đa thức thành nhân tử
a) x^2 .16
b) x^2 + 2x - y^2 + 1
c) x^2 - 2xy - 4 + y^2
Bài 3:
a: \(x^2-16=\left(x-4\right)\cdot\left(x+4\right)\)
b: \(x^2+2x+1-y^2=\left(x+1+y\right)\left(x+1-y\right)\)
c: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
Bài 1.Cho biểu thức
A = (\(\dfrac{2-x}{x+3}-\dfrac{3-x}{x+2}+\dfrac{2-x}{x^2+5x+6}\)) : (1-\(\dfrac{x}{x-1}\))
(a) Rút gọn A.
(b) Tìm x để A > 2.
Bài 2.Cho x+y=a,\(x^2+y^2=b\).Tính \(x^3+y^3\)theo a và b
bài 2. tính giá trị biểu thức sau
16x^2-y^2 tại x=87 và y=13
bài 3 rút gọn các biểu thức sau
a) (x-y)^3+(y+x)^3+(y-x)^3-3xy.(x+y)
b) (5x-1)^2+2.(1-5x).(4+5x)+(5x+4)^2
bài 4 tìm x biết
a)9x^2+x=0
b)27x^3+x=0
Bài 2: Tính giá trị của biểu thức sau:
\(16x^2-y^2=\left(4x+y\right)\left(4x-y\right)\)
Thay \(\hept{\begin{cases}x=87\\y=13\end{cases}}\)
\(\Rightarrow\left(4.87+13\right)\left(4.87-13\right)=361.335=120935\)
Bài 4: Tìm x
a) \(9x^2+x=0\)
\(\Rightarrow x\left(9x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\9x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{9}\end{cases}}\)
b) \(27x^3+x=0\)
\(\Rightarrow x\left(27x^2+1=0\right)\)
\(\Rightarrow\orbr{\begin{cases}x=0\\27x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\27x^2=\left(-1\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{-1}{27}\end{cases}}\)
Ta có: \(\frac{-1}{27}\) loại vì \(x^2\ge0\forall x\)
Vậy \(x=0\)
Bài 2:Tính:
a,(x- 6y) (x+6y)
b,(x-2) (x2 +2x+4)
Bài 3:Rút gọn:
a,(x+1)2 - (x-1)2 - 3 (x+1) (x-1)
b,(x - 1)3 - ( x-1) 3 + 6 (x-1) (x+1)
Bài 2:
a) \(=x^2-36y^2\)
b) \(=x^3-8\)
Bài 3:
a) \(=x^2+2x+1-x^2+2x-1-3x^2+3=-3x^2+4x+3\)
b) \(=6\left(x-1\right)\left(x+1\right)=6x^2-6\)