LP

Những câu hỏi liên quan
NL
Xem chi tiết
NL
6 tháng 3 2017 lúc 21:21

2 câu đầu thôi bạn ak

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 2 2017 lúc 13:34

- Nhẩm tính rồi điền kết quả vào chỗ trống.

- Biểu thức có hai phép tính thì thực hiện từ trái sang phải.

1 + 2 = 3     1 + 1 = 2     1 + 2 = 3     1 + 1 + 1 = 3

1 + 3 = 4     2 - 1 = 1     3 - 1 = 2     3 - 1 - 1 = 1

1 + 4 = 5     2 + 1 = 3     3 - 2 = 1     3 - 1 + 1 = 3

Bình luận (0)
NL
27 tháng 5 2021 lúc 20:33

tính;

1+2=3   1+1=2  1+2=3  1+1+1=3

1+3=4   2-1=1  3-1 =2   3-1-1= 0

1+4=5   2+1=3  3-2=1   3-1+1=3

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
H24
Xem chi tiết
H24
21 tháng 7 2017 lúc 18:02

a)   \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)

\(=\frac{1}{5}\)

b)   \(\left(1-\frac{3}{4}\right).\left(1-\frac{3}{7}\right).\left(1-\frac{3}{10}\right)........\left(1-\frac{3}{97}\right).\left(1-\frac{3}{100}\right)\)

\(=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}.......\frac{94}{97}.\frac{97}{100}\)

\(=\frac{1}{100}\)

Bình luận (0)
NP
Xem chi tiết
H24
25 tháng 3 2024 lúc 20:36

ính giá trị biểu thức:

(1/3 + 1/3^2 + 1/3^3 + 1/3^4) . 3^5 + (1/3^5 + 1/3^6 + 1/3^7 + 1/3^8) . 3^9 + ... + (1/3^97 + 1/3^98 + 1/3^99 + 1/3^100) . 3^101

Ta có thể thực hiện theo các bước sau:

Bước 1: Nhóm các hạng tử:

Ta có thể nhóm các hạng tử trong biểu thức thành các nhóm có dạng:

(1/3^n + 1/3^(n+1) + 1/3^(n+2) + 1/3^(n+3)) . 3^(n+4)

Với n = 1, 5, 9, ..., 97.

Bước 2: Tính giá trị từng nhóm:

Xét nhóm thứ nhất:

(1/3 + 1/3^2 + 1/3^3 + 1/3^4) . 3^5

= (1/3 + 1/3^2 + 1/3^3 + 1/3^4) . (3^4 . 3)

= (1/3 + 1/3^2 + 1/3^3 + 1/3^4) . 81

Ta có thể sử dụng công thức khai triển tổng của cấp số nhân để tính giá trị trong ngoặc:

1 + 1/3 + 1/3^2 + 1/3^3 = (1 - (1/3)^4) / (1 - 1/3) = 80/81

Do đó, giá trị của nhóm thứ nhất là:

(80/81) . 81 = 80

Tương tự, ta có thể tính giá trị các nhóm tiếp theo:

Giá trị nhóm thứ hai: (80/81) . 3^4 . 81 = 80 . 3^4

Giá trị nhóm thứ ba: (80/81) . 3^8 . 81 = 80 . 3^8

...

Giá trị nhóm thứ 25: (80/81) . 3^96 . 81 = 80 . 3^96

Bước 3: Cộng các giá trị từng nhóm:

Giá trị của biểu thức là tổng giá trị của các nhóm:

80 + 80 . 3^4 + 80 . 3^8 + ... + 80 . 3^96

= 80 (1 + 3^4 + 3^8 + ... + 3^96)

Bước 4: Tính tổng 1 + 3^4 + 3^8 + ... + 3^96:

Đây là một cấp số nhân với số hạng đầu tiên là 1, công bội là 3^4 và có 25 số hạng.

Tổng của cấp số nhân này là:

(1 - (3^4)^25) / (1 - 3^4) = (1 - 3^100) / (1 - 81) = (1 - 3^100) / -80

Bước 5: Thay giá trị và kết luận:

Thay giá trị tổng vào biểu thức, ta được:

80 (1 + 3^4 + 3^8 + ... + 3^96) = 80 . (1 - 3^100) / -80

= (1 - 3^100)

Vậy, giá trị của biểu thức là 1 - 3^100.

Lưu ý:

Việc sử dụng công thức khai triển tổng cấp số nhân giúp đơn giản hóa việc tính giá trị các nhóm. Cần chú ý đến số hạng đầu tiên, công bội và số hạng của cấp số nhân khi áp dụng công thức.

Kết quả:

Giá trị của biểu thức là 1 - 3^100.

Bình luận (0)
NT
Xem chi tiết
TH
13 tháng 2 2018 lúc 12:16

A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

3A-A= \(1-\frac{1}{3^{2008}}\)

Bình luận (0)
TH
13 tháng 2 2018 lúc 12:18

B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)

3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)

3B - B = \(1-\frac{1}{3^n}\)

Bình luận (0)
PQ
13 tháng 2 2018 lúc 12:21

Ta có :

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

\(\Leftrightarrow\)\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

\(\Leftrightarrow\)\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\right)\)

\(\Leftrightarrow\)\(2A=1-\frac{1}{3^{2008}}\)

\(\Leftrightarrow\)\(2A=\frac{3^{2008}-1}{3^{2008}}\)

\(\Leftrightarrow\)\(A=\frac{3^{2008}-1}{3^{2008}}:2\)

\(\Leftrightarrow\)\(A=\frac{3^{2008}-1}{2.3^{2008}}\)

Vậy \(A=\frac{3^{2008}-1}{2.3^{2008}}\)

Bình luận (0)
TH
Xem chi tiết
TH
18 tháng 9 2021 lúc 14:33

tính bằng cách thuân tiện nhé

 

Bình luận (0)
PN
18 tháng 9 2021 lúc 15:15

Ôi rồi ôi

Bình luận (0)
H24
18 tháng 9 2021 lúc 16:47

câu này thì chịu bucminh

Bình luận (0)
BP
Xem chi tiết
TV
20 tháng 12 2016 lúc 18:40

13095579 ucche

Bình luận (1)
SC
24 tháng 12 2016 lúc 18:01

18095615

Bình luận (0)
NC
5 tháng 4 2021 lúc 19:48

Cho mình nha

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
3 tháng 5 2019 lúc 10:04

Lời giải chi tiết:

1 + 2 = 3 1 + 1 = 2 1 + 1 + 1 = 3
3 – 1 = 2 2 – 1 = 1 3 – 1 – 1 = 1
3 – 2 = 1 2 + 1 = 3 3 – 1 + 1 = 3
Bình luận (0)