Những câu hỏi liên quan
HN
Xem chi tiết
NT
29 tháng 7 2021 lúc 15:10

\(\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3}-1+2-\sqrt{3}\)

=1

Bình luận (0)
PK
Xem chi tiết
HD
26 tháng 7 2021 lúc 16:56

Bài 2 

b, `\sqrt{3x^2}=x+2`          ĐKXĐ : `x>=0`

`=>(\sqrt{3x^2})^2=(x+2)^2`

`=>3x^2=x^2+4x+4`

`=>3x^2-x^2-4x-4=0`

`=>2x^2-4x-4=0`

`=>x^2-2x-2=0`

`=>(x^2-2x+1)-3=0`

`=>(x-1)^2=3`

`=>(x-1)^2=(\pm \sqrt{3})^2`

`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$

`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$

Vậy `S={1+\sqrt{3};1-\sqrt{3}}`

Bình luận (1)
HD
26 tháng 7 2021 lúc 17:12

Bài 1 

a, `3x-7\sqrt{x}+4=0`            ĐKXĐ : `x>=0`

`<=>3x-3\sqrt{x}-4\sqrt{x}+4=0`

`<=>3\sqrt{x}(\sqrt{x}-1)-4(\sqrt{x}-1)=0`

`<=>(3\sqrt{x}-4)(\sqrt{x}-1)=0`

TH1 :

`3\sqrt{x}-4=0`

`<=>\sqrt{x}=4/3`

`<=>x=16/9` ( tm )

TH2

`\sqrt{x}-1=0`

`<=>\sqrt{x}=1` (tm)

Vậy `S={16/9;1}`

b, `1/2\sqrt{x-1}-9/2\sqrt{x-1}+3\sqrt{x-1}=-17`     ĐKXĐ : `x>=1`

`<=>(1/2-9/2+3)\sqrt{x-1}=-17`

`<=>-\sqrt{x-1}=-17`

`<=>\sqrt{x-1}=17`

`<=>x-1=289`

`<=>x=290` ( tm )

Vậy `S={290}`

 

Bình luận (1)
NT
26 tháng 7 2021 lúc 22:44

Bài 1: 

a) Ta có: \(3x-7\sqrt{x}+4=0\)

\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)

b) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}\cdot\left(-1\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

Bình luận (0)
MH
Xem chi tiết
H24
24 tháng 8 2021 lúc 16:25

`a)sqrt{4+sqrt7}-sqrt{4-sqrt7}`

`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`

`=sqrt{(7+2sqrt7+1)/2}-sqrt{(7-2sqrt7+1)/2}`

`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7-1)^2/2}`

`=(sqrt7+1)/sqrt2-(sqrt7-1)/sqrt2`

`=2/sqrt2=sqrt2`

`b)sqrt{4--sqrt15}-sqrt{4+sqrt15}`

`=sqrt{(8-2sqrt15)/2}-sqrt{(8+2sqrt15)/2}`

`=sqrt{(5-2sqrt{5.3}+3)/2}-sqrt{(5+2sqrt{5.3}+3)/2}`

`=sqrt{(sqrt5-sqrt3)^2/2}-sqrt{(sqrt5+sqrt3)^2/2}`

`=(sqrt5-sqrt3)/sqrt2-(sqrt5+sqrt3)/sqrt2`

`=(-2sqrt3)/sqrt2=-sqrt6`

`c)sqrt{2+sqrt3}+sqrt{2-sqrt3}`

`=sqrt{(4+2sqrt3)/2}+sqrt{(4-2sqrt3)/2}`

`=sqrt{(3+2sqrt3+1)/2}+sqrt{(3-2sqrt3+1)/2}`

`=sqrt{(sqrt3+1)^2/2}+sqrt{(sqrt3-1)^2/2}`

`=(sqrt3+1)/sqrt2+(sqrt3-1)/sqrt2`

`=(2sqrt3)/sqrt2=sqrt6`

`d)sqrt{9+sqrt17}-sqrt{9-sqrt17}`

`=sqrt{(18+2sqrt17)/2}-sqrt{(18-2sqrt17)/2}`

`=sqrt{(17+2sqrt17+1)/2}-sqrt{(17-2sqrt17+1)/2}`

`=sqrt{(sqrt17+1)^2/2}-sqrt{(sqrt17-1)^2/2}`

`=(sqrt17+1)/sqrt2-(sqrt17-1)/sqrt2`

`=2/sqrt2=sqrt2`

Bình luận (0)
NT
25 tháng 8 2021 lúc 0:55

a: Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\sqrt{2}\)

b: Ta có: \(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}\)

\(=\dfrac{\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

Bình luận (0)
TN
Xem chi tiết
PK
Xem chi tiết
AT
12 tháng 7 2021 lúc 15:29

1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=\left(\sqrt{19}\right)^2-3^2=19-9=10\)

2) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\sqrt{\dfrac{8+2\sqrt{7}}{2}}-\sqrt{\dfrac{8-2\sqrt{7}}{2}}\)

\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}\)

\(=\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}=\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1}{\sqrt{2}}-\dfrac{\sqrt{7}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

3) \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}=\sqrt{8+\sqrt{4.15}}+\sqrt{9.5}-\sqrt{4.3}\)

\(=\sqrt{8+2\sqrt{15}}+3\sqrt{5}-2\sqrt{3}\)

\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}=\left|\sqrt{5}+\sqrt{3}\right|+3\sqrt{5}-2\sqrt{3}\)

\(\sqrt{5}+\sqrt{3}+3\sqrt{5}-2\sqrt{3}=4\sqrt{5}-\sqrt{3}\)

4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2+2.2.\sqrt{5}+2^2}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)

\(=\sqrt{5}-2-\sqrt{5}-2=-4\)

Bình luận (1)
NT
13 tháng 7 2021 lúc 0:01

1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=19-9=10\)

4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5}-2-\sqrt{5}-2=-4\)

Bình luận (0)
PK
Xem chi tiết
AT
12 tháng 7 2021 lúc 10:40

\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)

\(=\sqrt{12}+1=2\sqrt{3}+1\)

\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-1\)

\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

2) biến đổi khúc sau như câu 1:

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

 

Bình luận (3)
NT
12 tháng 7 2021 lúc 11:55

4) Ta có: \(\sqrt{30-2\sqrt{16+6\sqrt{11+4\sqrt{4-2\sqrt{3}}}}}\)

\(=\sqrt{30-2\sqrt{16+6\sqrt{11+4\left(\sqrt{3}-1\right)}}}\)

\(=\sqrt{30-2\sqrt{16+6\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{30-2\sqrt{16+6\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{30-2\sqrt{28+6\sqrt{3}}}\)

\(=\sqrt{30-2\left(3\sqrt{3}+1\right)}\)

\(=\sqrt{28-6\sqrt{3}}=3\sqrt{3}-1\)

Bình luận (0)
NT
12 tháng 7 2021 lúc 11:56

5) Ta có: \(\dfrac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)

\(=\dfrac{5\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)^2}{\sqrt{75}-5\sqrt{2}}\)

\(=\dfrac{5\left(\sqrt{3}-\sqrt{2}\right)}{5\left(\sqrt{3}-\sqrt{2}\right)}=1\)

Bình luận (0)
QM
Xem chi tiết
NT
26 tháng 12 2021 lúc 22:59

a: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

Bình luận (0)
LH
Xem chi tiết
EC
29 tháng 7 2020 lúc 21:52

\(A=\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}\)

\(A=\sqrt{9+6\sqrt{5}+5}+\sqrt{9-6\sqrt{5}+5}\)

 \(A=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(A=3+\sqrt{5}+3-\sqrt{5}=6\)

b) \(B=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(B=\sqrt{3-4\sqrt{3}+4}-\sqrt{3+4\sqrt{3}+4}\)

\(B=\sqrt{\left(\sqrt{3}-2\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(B=2-\sqrt{3}-\sqrt{3}-2=-2\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NP
29 tháng 7 2020 lúc 21:53

Câu a tách 14 thành 5+9 . Có hằng đẳng thức

Câu b tương tự tách 7 thành 4+ 3 nhé

Bình luận (0)
 Khách vãng lai đã xóa
NQ
Xem chi tiết
NT
26 tháng 7 2020 lúc 22:20

Sửa đề: Chứng minh \(\left(\sqrt{7+4\sqrt{3}}+\sqrt{8-2\sqrt{15}}\right)-\left(\sqrt{8+2\sqrt{15}}-\sqrt{7-4\sqrt{3}}\right)=\left(\sqrt{3}-1\right)^2\)

Ta có: \(VT=\left(\sqrt{7+4\sqrt{3}}+\sqrt{8-2\sqrt{15}}\right)-\left(\sqrt{8+2\sqrt{15}}-\sqrt{7-4\sqrt{3}}\right)\)

\(=\left(\sqrt{4+2\cdot2\cdot\sqrt{3}+3}+\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\right)-\left(\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\right)\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|2+\sqrt{3}\right|+\left|\sqrt{5}-\sqrt{3}\right|-\left|\sqrt{5}+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)

\(=\left(2+\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}+\sqrt{3}\right)+\left(2-\sqrt{3}\right)\)

\(=2+\sqrt{3}+\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}+2-\sqrt{3}\)

\(=4-2\sqrt{3}\)

\(=3-2\cdot\sqrt{3}\cdot1+1\)

\(=\left(\sqrt{3}-1\right)^2=VP\)(đpcm)

Bình luận (0)