Những câu hỏi liên quan
DS
Xem chi tiết
HD
4 tháng 5 2016 lúc 9:38

Ta có \(\frac{1}{11};\frac{1}{12};\frac{1}{13};...;\frac{1}{19}>\frac{1}{20}\)

Suy ra S > \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}+\frac{1}{20}\)( có 10 số hạng)=\(\frac{10}{20}=\frac{1}{2}\)Vậy S>\(\frac{1}{2}\)
Bình luận (0)
PD
4 tháng 5 2016 lúc 8:58

Ta có S=1/11+1/12+1/13+...+1/20(có 10 phân số)

           S>1/20+1/20+1/20+...+1/20(có 10 phân số)

           S<10/20=1/2

           Nên tổng của S>1/2

Bình luận (0)
Xem chi tiết
ZZ
27 tháng 2 2019 lúc 19:56

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)

\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)

\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Bình luận (0)

Bài làm

Ta có: 

\(\frac{1}{11}>\frac{1}{20}\)\(\frac{1}{12}>\frac{1}{20}\)\(\frac{1}{13}>\frac{1}{20}\)\(\frac{1}{14}>\frac{1}{20}\)\(\frac{1}{15}>\frac{1}{20}\)\(\frac{1}{16}>\frac{1}{20}\)\(\frac{1}{17}>\frac{1}{20}\)\(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)

=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)

hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)

=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Do đó: \(S=\frac{1}{2}\)

# Chúc bạn học tốt #

Bình luận (0)
HS
28 tháng 2 2019 lúc 19:34

Ta có các phân số : \(\frac{1}{11};\frac{1}{12};\frac{1}{13};\frac{1}{14};\frac{1}{15};\frac{1}{16};\frac{1}{17};\frac{1}{18};\frac{1}{19}>\frac{1}{20}\)

Do đó : \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)có 10 phân số \(\frac{1}{20}\)

\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{10}{20}\)

\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{2}\)

Vậy : \(S>\frac{1}{2}\)

Bình luận (0)
NG
Xem chi tiết
AN
21 tháng 2 2017 lúc 22:46

Ta có:

\(S=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

Vậy S > \(\frac{1}{2}\)

Bình luận (0)
NH
21 tháng 2 2017 lúc 22:11

1/2 lớn hơn S, xin lỗi tớ không biết cách viết phân số

Bình luận (0)
NH
21 tháng 2 2017 lúc 22:15

các số S càng cộng với nhau càng nhỏ

Bình luận (0)
DJ
Xem chi tiết
TM
Xem chi tiết
NQ
Xem chi tiết
TD
27 tháng 2 2018 lúc 19:15

Ta có : các phân số từ 1/11 ; 1/12  đến  1/19 đều lớn hơn phân số 1/20

Từ đó lại có : 1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 > 1/20 + 1/20 + 1/20+ ...+ 1/20 (  số số hạng gồm 10 phân số 1/20)

=> 1/11+ 1/12+ 1/13+...+ 1/20 > 10/20

=>  1/11+1/12+1/13+...+1/20  > 1/2

<=>    S   > 1/2 .

Bình luận (0)
PQ
27 tháng 2 2018 lúc 18:54

Ta có : 

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 10 số \(\frac{1}{20}\) )

\(S>\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Bình luận (0)
VH
Xem chi tiết
HQ
Xem chi tiết
H24
15 tháng 3 2017 lúc 9:04

Ta có:

\(\frac{1}{11}>\frac{1}{20}\)

\(\frac{1}{12}>\frac{1}{20}\)

\(...............\)

\(\frac{1}{19}>\frac{1}{20}\)

\(\frac{1}{20}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+......+\frac{1}{19}+\frac{1}{20}>\frac{10}{20}\) ( vì S có 20 số hạng )

\(\Rightarrow S>\frac{1}{2}\)

Vậy: \(S>\frac{1}{2}\)

Bình luận (0)
LH
Xem chi tiết
TU
11 tháng 4 2017 lúc 21:03

kb đc 0

Bình luận (0)
NH
11 tháng 4 2017 lúc 22:10

2 câu đầu tôi làm đc

Bình luận (0)
TD
24 tháng 12 2017 lúc 21:46

a) Ta có :

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}\)

\(>\frac{1}{10}+\frac{1}{100}.90=\frac{1}{10}+\frac{90}{100}=1\)

vậy A > 1

b) \(B=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)

\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{20}.10=\frac{1}{2}\)

Vậy B > \(\frac{1}{2}\)

Bình luận (0)