Hãy so sánh S và \(\frac{1}{2}\)
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+.....+\frac{1}{20}\)
Cho tổng S =\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\). Hãy so sánh giá trị tổng S với \(\frac{1}{2}\)
Ta có \(\frac{1}{11};\frac{1}{12};\frac{1}{13};...;\frac{1}{19}>\frac{1}{20}\)
Suy ra S > \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}+\frac{1}{20}\)( có 10 số hạng)=\(\frac{10}{20}=\frac{1}{2}\)Vậy S>\(\frac{1}{2}\)Ta có S=1/11+1/12+1/13+...+1/20(có 10 phân số)
S>1/20+1/20+1/20+...+1/20(có 10 phân số)
S<10/20=1/2
Nên tổng của S>1/2
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)
Hãy so sánh S và \(\frac{1}{2}\)
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)
\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)
\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}\)
Bài làm
Ta có:
\(\frac{1}{11}>\frac{1}{20}\), \(\frac{1}{12}>\frac{1}{20}\), \(\frac{1}{13}>\frac{1}{20}\), \(\frac{1}{14}>\frac{1}{20}\), \(\frac{1}{15}>\frac{1}{20}\), \(\frac{1}{16}>\frac{1}{20}\), \(\frac{1}{17}>\frac{1}{20}\), \(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)
=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)
hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)
=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)
Do đó: \(S=\frac{1}{2}\)
# Chúc bạn học tốt #
Ta có các phân số : \(\frac{1}{11};\frac{1}{12};\frac{1}{13};\frac{1}{14};\frac{1}{15};\frac{1}{16};\frac{1}{17};\frac{1}{18};\frac{1}{19}>\frac{1}{20}\)
Do đó : \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)có 10 phân số \(\frac{1}{20}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{10}{20}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{2}\)
Vậy : \(S>\frac{1}{2}\)
cho S\(=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\)
so sánh S và \(\frac{1}{2}\)
Ta có:
\(S=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
Vậy S > \(\frac{1}{2}\)
1/2 lớn hơn S, xin lỗi tớ không biết cách viết phân số
các số S càng cộng với nhau càng nhỏ
Cho S = \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)
Hãy so sánh S và \(\frac{1}{2}\)
Cho \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)
Hãy so sánh S với \(\frac{1}{2}\)
cho S=\(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+\(\frac{1}{14}\)+......+\(\frac{1}{20}\)
Hãy so sánh S và \(\frac{1}{2}\)
Ta có : các phân số từ 1/11 ; 1/12 đến 1/19 đều lớn hơn phân số 1/20
Từ đó lại có : 1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 > 1/20 + 1/20 + 1/20+ ...+ 1/20 ( số số hạng gồm 10 phân số 1/20)
=> 1/11+ 1/12+ 1/13+...+ 1/20 > 10/20
=> 1/11+1/12+1/13+...+1/20 > 1/2
<=> S > 1/2 .
Ta có :
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 10 số \(\frac{1}{20}\) )
\(S>\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
a,So Sánh: A và B
A=\(\frac{98^{99}+1}{98^{89}+1}\) và B=\(\frac{98^{98}+1}{98^{88}+1}\)
b,Cho S=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\)so sánh S với \(\frac{1}{2}\)
c, Cho A=\(\frac{5n-11^2}{4n-13}\) \(\left(n\in Z\right)\)
Tìm giá trị của n để A đạt giá trị lớn nhất
Cho S = \(\frac{1}{11}\)+ \(\frac{1}{12}\)+\(\frac{1}{13}\)+\(\frac{1}{14}\)+ \(\frac{1}{15}\)+\(\frac{1}{16}\)+\(\frac{1}{17}\)+\(\frac{1}{18}\)+\(\frac{1}{19}+\frac{1}{20}\)
Hãy so sánh S và \(\frac{1}{2}\)
Ta có:
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
\(...............\)
\(\frac{1}{19}>\frac{1}{20}\)
\(\frac{1}{20}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+......+\frac{1}{19}+\frac{1}{20}>\frac{10}{20}\) ( vì S có 20 số hạng )
\(\Rightarrow S>\frac{1}{2}\)
Vậy: \(S>\frac{1}{2}\)
a, Cho A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{99}+\frac{1}{100}\) . So Sánh A với 1
b, B=\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\). So sánh B với \(\frac{1}{2}\)
c, cho M=\(\frac{2013}{2014}+\frac{2014}{2015}\)và N=\(\frac{2013+2014}{2014+2015}\). So sánh M và N
Câu a, p/s cuối cùng là \(\frac{1}{100}\)nha mí bn
a) Ta có :
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}\)
\(>\frac{1}{10}+\frac{1}{100}.90=\frac{1}{10}+\frac{90}{100}=1\)
vậy A > 1
b) \(B=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{20}.10=\frac{1}{2}\)
Vậy B > \(\frac{1}{2}\)