Những câu hỏi liên quan
NT
Xem chi tiết
CL
Xem chi tiết
L3
Xem chi tiết
DD
Xem chi tiết
SS
13 tháng 3 2022 lúc 16:16

a)Hoành độ giao điểm của (P)và (d) là:

        \(\frac{1}{2}x^2=x+4\)

\(\Leftrightarrow x^2=2x+8\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow\left(x+2\right).\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}}\)

Thay \(x=-2\)vào (d) ta được:

     \(y=-2+4=2\)

Thay \(x=4\)vào (d)ta được:

    \(y=4+4=8\)

Vậy \(A\left(-2;2\right),B\left(4;8\right)\)hoặc \(A\left(4;8\right),B\left(-2;2\right)\)

b)Mk ko bt làm

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
AN
10 tháng 1 2017 lúc 9:19

Phương trình đường thẳng (d) có dạng: y = kx + b

Vì (d) đi qua I(0;1) nên

\(\Rightarrow1=0k+b\Rightarrow b=1\)

\(\Rightarrow\left(d\right):y=kx+1\)

Tọa độ hoành độ giao điểm của (P) và (d) là

\(-x^2=kx+1\Leftrightarrow x^2+kx+1=0\)

Trung điểm AB nằm trên trục tung nên có hoành độ là 0 hay x = 0

Ta có: \(\frac{x_A+x_B}{2}=0\Leftrightarrow\frac{-k}{2}=0\Leftrightarrow k=0\)

Bình luận (0)
BQ
Xem chi tiết
LT
21 tháng 2 2018 lúc 22:50

A B C D E O O' K

a) Chứng minh ABCD và ADKC là các tứ giác nội tiếp.

b) Từ câu a suy ra \(\widehat{CKB}=\widehat{CDB}\).Ta lại có

\(\widehat{CKE}=\widehat{ECA}=\widehat{CDB}\)

Suy ra\(\widehat{CKB}=\widehat{CKE}\), do đó K, E, B thẳng hàng.

Bình luận (0)
H24
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
YT
8 tháng 4 2016 lúc 11:52

Kéo dài AC cắt BD tại M.

Ta có : CH // BM ( vìcùng vuông góc với AB )

--> \(\frac{IH}{BD}=\frac{AI}{AD};\frac{IC}{DM}=\frac{AI}{AD}\rightarrow\frac{IH}{BD}=\frac{IC}{DM}\left(1\right)\)

Mặt khác: CD=BD(tính chất 2 tiếp tuyến cắt nhau) --> góc DCB= góc DBC

Mà : góc DCB + góc DCM =90o; góc DBC +góc CMB =90o --> góc DCM =góc CMD -->MD =CD ,mà CD=DB-->MD=DB (2)

Từ 1 và 2 --> IH=IC -->I là trung điểm CH

Bình luận (0)