|x + 1| + |x + 2| +...+ |x + 100| = 101x.
1. cho f(x)=x8-101x7+101x6-101x5+...+101x2-101x+25. tính f(100)
1. cho f(x)=x8-101x7+101x6-101x5+...+101x2-101x+25. tính f(100)
f(x)=x8-101x7+101x6-101x5+...+101x2-101x+25
=x8-(100+1)x7+(100+1)x6-(100+1)x5+...+(100+1)x2-(100+1)x+25
f(100 ) hay x= 100
Thay 100 = x ,có :
=x8-(x+1)x7+(x+1)x6-(x+1)x5+...+(x+1)x2-(x+1)x+25
= x8 - x8 - x7+ x7 + x6 - x6 - x5 + x5 + .......................+ x3 + x2 - x2 + x + 25
= x+ 25
f(100 0 = 100 + 25 = 125
Vậy f(100 ) =125
A=x^15 -101x^14 + 101x^13-....-101x^2+ 101x +2020 tại x +100
Ta có x = 100
=> x + 1 = 101
Khi đó A = x15 - 101x14 + 101x13 - 101x12 + ... + 101x3 - 101x2 + 101x + 2020
= x15 - (x + 1)x14 + (x + 1)x13 - (x + 1)x12 + ... + (x + 1)x3 - (x + 1)x2 + (x + 1)x + 2020
= x15 - x15 - x14 + x14 + x13 - x13 - x12 + ... + x4 + x3 - x3 - x2 + x2 + x + 2020
= x + 2020
= 101 + 2020 (Vì x = 100)
= 2121
Vậy A = 2121 khi x = 100
A = x15 - 101x14 + 101x13 - ... - 101x2 + 101x + 2020 tại x = 100
x = 100 => 101 = x + 1
Thế vào A ta được
A = x15 - ( x + 1 )x14 + ( x + 1 )x13 - ... - ( x + 1 )x2 + ( x + 1 )x + 2020
= x15 - ( x15 + x14 ) + ( x14 + x13 ) - ... - ( x3 + x2 ) + ( x2 + x ) + 2020
= x15 - x15 - x14 + x14 + x13 - ... - x3 - x2 + x2 + x + 2020
= x + 2020
= 100 + 2020 = 2120
Bài làm :
Ta có :
x = 100
=> x + 1 = 101
Theo đề bài ; ta có :
A = x15 - 101x14 + 101x13 - 101x12 + ... + 101x3 - 101x2 + 101x + 2020
A = x15 - (x + 1)x14 + (x + 1)x13 - (x + 1)x12 + ... + (x + 1)x3 - (x + 1)x2 + (x + 1)x + 2020
A= x15 - x15 - x14 + x14 + x13 - x13 - x12 + ... + x4 + x3 - x3 - x2 + x2 + x + 2020
A= x + 2020
A= 100 + 2020
A= 2120
Vậy A = 2120
cho f(x)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25.Tính f(100)
Cho đa thức f(x)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25. Tính f(100)
f(100)=x8-(100+1)x7+(100+1)x6-(100+1)x5+....+(100+1)x2-(100+1)x+25
=x8-(x+1)x7+(x+1)x6-(x+1)x5+....+(x+1)x2-(x+1)x+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=25
vậy f(100)=25
Cho F(x) = x^8 -101x^7+101x^6-101x^5+...+101x^2-101x+25
Tính F(100)
Cho đa thức f(x) + x^8 - 101x^7+101x^6-101x^5+...+101x^2-101x+25 . Tính f(100)
cho f(x)= x^8-101x^7+106x^6-101x^5...+101x^2-101x+125 tính f(100)
Cho f(x) = x^8 -101x^7 +101x^6 -101x^5 +...+101x^2 -101x +25 . Tính f(100).
Ta có: 101 = 100+1=x+1
Khi đó :
\(f\left(x\right)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25\)
\(f\left(x\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+.....+\left(x+1\right)x^2-\left(x+1\right)x+25\)
\(f\left(x\right)=x^8-x^8-x^7+x^7+x^6-x^6+x^5+...+x^3+x^2-x^2-x+25\)
\(f\left(x\right)=-x+25\)
Vậy \(f\left(100\right)=-100+25=-75\)
Cho đa thức f(x) = x8 – 101x7 + 101x6 – 101x5 + … + 101x2 – 101x + 1. Tính f(100)