Tìm STN nhỏ nhất chia 3 dư 1; chia 4 dư 2; chia 5 dư 3 ; chia 6 dư 4 và chia hết cho 11
b) Tìm số nguyên x;y: 2x(3y-2) + ( 3y-2) = -55
Giúp mk đc ko ạ, mk cần đáp án gấp><
1, tìm 1 số tự nhiên nhỏ nhất khác 0 chia hết cho 4,5,6,7,9,10
2, tìm 1 stn nhỏ nhất khác 1 chia cho 6,7,8,9,10,11,12 đều dư 1
3, tim 1 stn nhỏ nhất chia 4 dư 2 , 6 dư 4 , 7 dư 5 ,8 dư 6 ,9 dư 7
4 , tìm stn nhỏ nhất chia 2,5,9 dư 1 và 7 dư 6
1.STN nhỏ nhất chia cho 6 dư 5 nhưng chia cho 19 dư 2
a) Tìm STN nhỏ nhất có tính chất trên.
b) Tìm dạng tổng quát của các STN có tính chất trên
2. Một STN chia cho 5 dư 1, chia cho 21 dư 3
a) Tìm STN nhỏ nhất có tính chất trên.
b) Hỏi số đó chia cho 105 dư bao nhiêu?
c) Số đó chia cho 35 dư bao nhiêu?
a, Vì số đó chia cho 6 dư 5; chia 19 dư 2 nên khi ta thêm vào số đó 55 đơn vị thì trở thành số chia hết cho cả 6 và 19
Ta có: \(\left\{{}\begin{matrix}a+55⋮6\\a+55⋮19\end{matrix}\right.\) ⇒ a + 55 \(\in\) BC(6; 19)
6 = 2.3; 19 = 19; BCNN(6; 19) = 2.3.19 = 114
⇒ BC(6; 19) = {0; 114; 228; 342;...;}
a \(\in\) { - 55; 59; 173;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 59
a + 55 \(\in\) B(114)
⇒ a = 114.k - 55 (k ≥1; k \(\in\) N)
Bài 2:
Vì số đó chia 5 dư 1 chia 21 dư 3 nên khi số đó thêm vào 39 đơn vị thì trở thành số chia hết cho cả 5 và 21
Ta có: a + 39 ⋮ 5; a + 39 ⋮ 21 ⇒ a + 39 \(\in\) BC(5; 21)
5 = 5; 21 = 3.7 BCNN(5; 21) = 3.5.7 = 105
⇒BC(5; 21) = {0; 105; 210;...;}
a+ 39 \(\in\) {0; 105; 210;...;}
a \(\in\) {-39; 66; 171;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 66
a + 39 ⋮ 105
⇒ a = 105.k - 39 (k ≥1; k \(\in\) N)
Bài 2, ý b
66 : 105 = 0 dư 66
Vậy số đó chia 105 dư 66
66 : 35 = 1 dư 31
Vậy số đó chia 35 dư 31
Tìm stn nhỏ nhất chia cho 13 dư 3, chia cho 40 dư 1
Lời giải:
Gọi số tự nhiên đó là $a$. Vì $a$ chia $13$ dư $3$ nên $a=13k+3$ với $k$ tự nhiên
$a-1\vdots 40$
$13k+3-1\vdots 40$
$13k+2\vdots 40$
$13k+2-40.2\vdots 40$
$13k-78\vdots 40$
$13(k-6)\vdots 40$
$\Rightarrow k-6\vdots 40$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất.
Với $k-6\vdots 40$ và $k$ tự nhiên thì $k$ nhỏ nhất bằng $6$
$\Rightarrow a=13k+3=13.6+3=81$
tìm stn a nhỏ nhất biết a chia 3 dư 1 , chia 5 dư 2 , chia 7 dư 3
tìm stn a nhỏ nhất biết a chia 2 dư 1,a chia 3 dư 1, a chia 5 dư 4, a chia 7 dư 3
Giải :
Vì số đó chia 2 dư 1, chia 3 dư 1, chia 5 dư 4, chia 7 dư 3 nên khi thêm 11 đơn vị vào số đó thì số đó chia hết cho cả 2; 3; 5; 7
Vì số đó là số tự nhiên nhỏ nhất nên số đó khi thêm 11 là số nhỏ nhất chia hết cho 2; 3; 5; 7
BCNN(2; 3; 5; 7} = 210
Số tự nhiên a là 210 - 11 = 199
kết luận :....
Tìm STN nhỏ nhất khi chia cho 3 ( dư 1); khi chia cho 5 ( dư 3) và khi chia cho 7 ( dư 5)
tìm STN nhỏ nhất có 2 chữ số biết số đó chia 3 dư 1,chia 4 dư 2,chia 5 dư 3
Tìm STN nhỏ nhất biết số đó chia cho 2 dư 1,chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4.
Tìm STN nhỏ nhất biết số đó chia cho 2 dư 1,chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4.
Gọi số cần tìm là A. Vì A chia cho 2 dư 1 và A chia cho 5 dư 4 nên A + 1 đồng thời chia hết cho 2 và 5. Vậy chữ số tận cùng của A + 1 là 0. Hiển nhiên A +1 không thể có 1 chữ số. Nếu A + 1 có 2 chữ số thì có dạng x0. Vì x0 chia hết cho 3 nên x chỉ có thể là 3 ; 6 ; 9 ta có số 30 ; 60 ; 90. Trong 3 số đó chỉ có 60 là chia hết cho 4 .
Vậy SCT là : 60-1 =59
Đáp số: 59
Tìm STN nhỏ nhất sao cho số đó chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4 và chia hết cho 11.
Gọi số cần tỉm là a.
Theo đề bài, ta có: a + 2 chia hết cho 3 ; 4 ; 5 ; 6
Suy ra: a + 2 là BC ( 3 ; 4 ; 5 ; 6 )
BCNN ( 3 ; 4 ; 5 ; 6 ) = 60 => a + 2 = 60 . n
Do đó: a = 60 . n - 2 ; N = { 1 ; 2 ; 3 ; 4 }
Mặt khác a chia hết cho 11 lần lượt cho 1 ; 2 ; 3 ....
Ta thấy N = 7 => a = 418 chia hết cho 11.
Vậy số cần tìm là 418.
@@
gọi số đó là a
a:3 dư 1 a:4 dư 2
=> a-1 chia hết cho 3 => a-2 chia hết 4
a-1+3 chia hết cho 3 a-2+4 chia hết 4
a+2 chia hết cho 3 a+2 chia hết 4
a:5 dư 3 a:6 dư 4
=> a-3 chia hết 5 a-4 chia hết 6
a-3+5 chia hết 5 a-4+6 chia hết 6
a+2 chia hết 5 a+2 chia hết 6
=> a+2 chia hết 3;4;5;6
BCNN(3;4;5;6)=60
=> a=62
tìm stn nhỏ nhất sao cho số đó chia cho 3 dư 1;chia 4 dư 2;chia 5 dư 3;chia 6 dư 4 và chia hết cho 11