cho a,b,c là 3 số thực khác 0 thoả mãn a^3+b^3+a^2b+b^2c-abc=0 tihs giá trị biểu thức P=a+b+c
Cho a,b,c là các số thực khác 0 thỏa mãn. Tính giá trị biểu thức:
\(P=\frac{a^2c}{a^2c+c^2b+b^2a}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
a. Cho số thực x,y thoả mãn: \(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\). Giá trị nhỏ nhất của biểu thức \(P=4\left(x^2+y^2\right)+15xy\)
b. Cho các số thực a,b,c thoả mãn \(\left\{{}\begin{matrix}-8+4a-2b+c>0\\8+4a+2b+c< 0\end{matrix}\right.\). Số giao điểm của đồ thị hàm số \(y=x^3+ax^2+bx+c\) và trục Ox.
a. Đề bài em ghi sai thì phải
Vì:
\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)
b.
Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)
Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R
Hàm bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right)=-8+4a-2b+c>0\)
\(f\left(2\right)=8+4a+2b+c< 0\)
\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)
\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)
Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)
\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb
Cho a, b, c là 3 số thực khác 0, thoả mãn điều kiện: a+b-c/c=b+c-a/a=c+a-b/b
tính giá trị biểu thức P=(1+b/a).(1+a/c).(1+c/b)
Cho a, b, c, là 3 số thực khác 0 , thoả mãn điều kiện : a+b-c/c =b+c-a/a= c+a-b/b. Hãy tính giá trị của biểu thức B =(1+ b/a) (1+ a/c) (1+ c/b) Toán lớp 7 nha
Cho 3 số a,b,c khác 0 thoả mãn a/2b= b/2c=c/2a
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2a}=\dfrac{a+b+c}{2(a+b+c)}=\dfrac{1}{2} \\->a=\dfrac{1}{2}.2b=b \\b=\dfrac{1}{2}.2c=c \\c=\dfrac{1}{2}.2a=a \\->a=b=c (đpcm)\)
Cho 2 số thực a,b thoả mãn ab khác 0, a khác 1, b khác 1 và a+b=1 . Tính giá trị của biểu thức :\(P=\frac{a}{b^2-1}-\frac{b}{a^2-1}+\frac{2\left(a+b\right)}{a^2b^2+3}\)
Cho các số thực a, b, c khác 0 thỏa mãn:
a+2b−c / c = b+2c−a / a = c+2a−b / b.
Tính giá trị của biểu thức N = ( 1 + a/b) (1 + b/c) ( 1 + c/a)
--------------
P/s: Viết chữ liền dấu + - là một phần
VD: 1 + a/b là 1 cộng với psố a/b
a+2b-c / c là tử số: a+2b-c trên mẫu số: c
Cho a,b,c là các số thực dương thỏa mãn abc=1. Tìm giá trị lớn nhất của biểu thức P=1/(a+2b+3)+1/(b+2c+3)+1/(c+2a+3)
Answer:
Có \(a+2b+3\)
\(=\left(a+b\right)+\left(b+1\right)+2\ge2\sqrt{ab}+2\sqrt{b}+2\)
\(\Rightarrow\frac{1}{a+2b+3}\le\frac{1}{2\left(\sqrt{ab}+\sqrt{b}+1\right)}\)
\(\Leftrightarrow\frac{1}{b+2c+3}\le\frac{1}{2\left(\sqrt{bc}+\sqrt{c}+1\right)}\)\(;\frac{1}{c+2c+3}\le\frac{1}{2\left(\sqrt{ac}+\sqrt{a}+1\right)}\)
\(\Rightarrow P\le\frac{1}{2}[\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{1}{\sqrt{bc}+\sqrt{c}+1}+\frac{1}{\sqrt{ac}+\sqrt{a}+1}]\)
Bởi vì abc = 1 nên \(\sqrt{abc}=1\)
\(\Rightarrow P\le\frac{1}{2}[\frac{\sqrt{c}}{1+\sqrt{bc}+\sqrt{c}}+\frac{1}{\sqrt{bc}+\sqrt{c}+1}+\frac{\sqrt{bc}}{\sqrt{bc}+\sqrt{c}+1}]\)
\(\Rightarrow P\le\frac{1\sqrt{bc}+\sqrt{c}+1}{2\sqrt{bc}+\sqrt{c}+1}\)
\(\Rightarrow P\le\frac{1}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Bài 1: Cho 3 số thực a, b,c thoả mãn (a+b+c):ab - (b+c-a):bc - (c+a-b):ac = 0
Chứng ming rằng: trong ba biểu thúc ở vế trái thì có ít nhất một biểu thức bằng 0.
Bài 2: Cho a+b+c = 0 (abc khác 0). Rút gọn biểu thức:
A= a2 : (a2 - b2 - c2) + b2 : (b2 - c2 - a2) + c2 : (c2 - b2 - a2)
Bài 3: Cho 3 số thực a,b,c đôi một khác nhau thoả mãn a+b+c = 0. Tính giá trị biểu thức:
M= [ (a-b):c + (b-c):a + (c-a):b ] [ c:(a-b) + a:(b-c)+ b:(c-a) ]