Cho hai số x và y thỏa mãn x2+2y2-3xy=0 và x>y>0.
Tính GTBT: A=\(\dfrac{6x+16y}{5x-3y}\)
cho hai số x, y thỏa mãn \(x^2+2y^2-3xy=0\)và x>y>0. Tính giá trị biểu thức A=\(\frac{6x+16y}{5x-3y}\)
Ta có x2 - 3xy + 2y2 = 0
<=> x2 - xy - 2xy + 2y2 = 0
<=> x(x - y) - 2y(x - y) = 0
<=> (x - y)(x - 2y) = 0
<=> \(\orbr{\begin{cases}x-y=0\\x-2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases}}}\)
*) Khi x = y
Vì x > y > 0 => x \(\ne y\)(loại)
* Khi x = 2y
=> x - y = 2y - y
=> y > 0 (Vì x - y > 0) (tm)
Với x = 2y ta có A = \(\frac{6x+16y}{5x-3y}=\frac{6.2y+16.y}{5.2y-3y}=\frac{28y}{7y}=4\)
Ta có : x2 +2y2 -3xy=0
<=> x2 - 2xy + y2 + y2 -xy =0
<=> (x - y)2 + y(y - x) =0
<=> (y - x)2 + y(y - x) =0
<=> (y - x)(y - x + y) =0
<=> y=x (vô lí ) hoặc x= 2y (thỏa mãn)
Thay x=2y vào A ta đc
A=\(\frac{12y+16y}{10y-3y}=\frac{28y}{7y}\)
A= 4
Bài 1:
a)So sánh \(\left(\dfrac{3}{4}\right)^{2021}+1với\dfrac{3}{4}+1\)
b)Cho x,y,z khác 0 thỏa mãn
\(\dfrac{2x-3}{5}=\dfrac{5y-2z}{3}=\dfrac{3z-5x}{2}\)
Tính GTBT: B=\(\dfrac{12x-5y-3z}{x-3y+2z}\)
help me ai nhanh nhất mik tích cho
a) Ta có: \(\left(\dfrac{3}{4}\right)^{2021}>\left(\dfrac{3}{4}\right)^1=\dfrac{3}{4}\)
\(\Leftrightarrow\left(\dfrac{3}{4}\right)^{2021}+1>\dfrac{3}{4}+1\)
Tìm GTLN và GTNN của biểu thức B=x+y với x,y là các số thỏa mãn phương trình
\(x^2+3y^2+3xy-8x-16y+23=0\)
a, x^3-2(x+1)+1
b,6(x-3)^2-x+3=0
Bài 2:cho x,y là 2 số khác nhau thỏa mãn x^2-y=y^2-x. Tính gtbt A=x^3+y^3+3xy(x^2+y^2)+6x^2y^2(x+y)
Cho hai số thực x, y thỏa mãn x ≥ 0 , y ≥ 1 , x + y = 3. Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x 3 + 2 y 2 + 3 x 2 + 4 xy − 5 x .
A. P max = 15 v à P min = 13.
B. P max = 20 v à P min = 18
C. P max = 20 v à P min = 15.
D. P max = 18 v à P min = 15.
Cho hai số thực x,y thỏa mãn x ≥ 0 , y ≥ 1 , x + y = 3 . Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x 3 + 2 y 2 + 3 x 2 + 4 x y - 5 x .
A. P max = 15 và P min = 13 .
B. P max = 20 và P min = 18
C. P max = 20 và P min = 15
D. P max = 18 và P min = 18
Cho hai số thực x, y thỏa mãn x≥ 0; y≥1 ; x+ y= 3 . Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P= x3+ 2y2+ 3x2+ 4xy- 5x lần lượt bằng:
A. 20 và 18 .
B. 20 và 15.
C. 16 và 15 .
D. 16 và 13.
Ta có y= 3-x≥ 1 nên x≤ 2 do đó : x
Khi đó P= x3+ 2( 3-x) 2+ 3x2+4x( 3-x) -5x= x3+x2-5x+18
Xét hàm số f(x) = x3+x2-5x+18 trên đoạn [0 ; 2] ta có:
f ' ( x ) = 3 x 2 + 2 x - 5 ⇒ f ' ( x ) = 0 x ∈ ( 0 ; 2 ) ⇔
F(0) =18; f(1) = 15; f(2) =20
Vậy giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P lần lượt bằng 20 và 15.
Chọn B.
Cho hai số thực x, y thỏa mãn x ≥ 0 , y ≥ 1 , x + y = 3. Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x 3 + 2 y 2 + 3 x 2 + 4 x y − 5 x lần lượt bằng
A. P m a x = 15 v à P min = 13
B. P m a x = 20 v à P min = 18
C. P m a x = 20 v à P min = 15
D. P m a x = 18 v à P min = 15
Đáp án C
Ta có x + y = 3 ⇒ y = 3 − x ≥ 1 ⇔ x ≤ 2 ⇒ x ∈ 0 ; 2
Khi đó P = f x = x 3 + 2 3 − x 2 + 3 x 2 + 4 x 3 − x − 5 x = x 3 + x 2 − 5 x + 18
Xét hàm số f x = x 3 + x 2 − 5 x + 18 trên đoạn 0 ; 2 , có f ' x = 3 x 2 + 2 x − 5
Phương trình 0 ≤ x ≤ 2 3 x 2 + 2 x − 5 = 0 ⇔ x = 1. Tính f 0 = 18 , f 1 = 15 , f 2 = 20
Vậy min 0 ; 2 f x = 15 , m a x 0 ; 2 f x = 20 hay P m a x = 20 và P min = 15
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024