chứng minh nếu a/b > c/d thì ad>bc và ngược lại
cho a, b, c, d thuộc Z và b > 0 ; d > 0 . chứng minh rằng
a)nếu a/b = c/d thì ad=cb và ngược lại
b) nếu a/b >c/d thì ad > cb và ngược lại
c) nếu a/b < c/d thì ad < cb và ngược lại
a, a/b = ad/bd ; c/d = bc/bd
Vì a/b = c/d => ad/bd = bc/bd => ad = bc
- Ngược lại ad = bc => ad/bd = bc/bd => a/b = c/d
b,c tương tự a
Bài 1:Cho số Hữu tỉ a/b với B>0.Chứng minh:
a,Nếu a/b > 1 thì a > b và ngược lại
b,Nếu a/b<1 thì a<b và ngược lại
Bài 2:Cho a/b > c/d ( b,d > 0 ).Chứng minh ad > bc
Bài 1:
a) + Nếu a/b > 1 thì a/b > b/b => a > b
+ Nếu a > b thì a/b > b/b => a/b > 1 (đpcm)
b) + Nếu a/b < 1 thì a/b < b/b => a < b
+ Nếu a < b thì a/b < b/b => a/b < 1 (đpcm)
Bài 2:
Do \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)
=> \(\frac{a.d}{b.c}< 1\Rightarrow a.d< b.c\left(đpcm\right)\)
bai2
vi a/b > c/d
=>ad/bd >cd/bd
và ad/bd , cd/bd có mẫu chung là bd
<=>ad>cd
cho hai số hữu tỉ a/b ,c/d ( b>0,d>0) chứng minh rằng a/b<c/d nếu ad<bc và ngược lại
cho 2 ps a/b và c/d (b>0,d>0). Chứng minh rằng ad < bc thì a/b<c/d và ngược lại.
Ta đã biết:
\(ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\) (1)
Theo (1) có: \(ad< bc\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)
Chứng minh tương tự với trường hợp ngược lại, có \(\frac{a}{b}>\frac{c}{d}\)
bài 1 cho hai số a/b,c/d{b>0,d>0 . chứng minh rằng a/b<c/d nếu ad<bc và ngược lại
cho 2 số hữu tỉ a/b và c/d(b>0,d>0).Chứng minh rằng:
a) nếu a/b<c/d thì ad<bc
b) nếu ad<bc thì a/b<c/d
ai tick đúng cho mk thì mk tick lại cho
a) a/b=ad/bd
c/d=cb/db
mà a/b<c/d=>ad/bd<cb/bd=>ad<bc
b)ad<bc=>ad/bd<bc/bd=> a/b<c/d
Cho 2 số hữa tỉ a/b,c/d ( b>0,d>0).Chứng minh rằng a/bc/d và nếu ad<bc và ngược lại
Các pn giải nhanh giúp mình nhé
mình sẽ tick hết
cho đoạn thẳng AB và CD a)Chứng minh nếu AB vuông góc với CD thì AC^2 -BC^ = AD^2 - BD^2 b) Chứng minh ngược lại với câu a, có AC^2 -BC^ = AD^2 - BD^2 thì AB vuông góc với CD Sài định lí 4 điểm nha mọi người!
Cho 2 số hữu tỉ a/b, e/d (b>0, d>0). Chứng minh rằng a/b<c/d nếu ad<bc và ngược lại
+) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow ad< bc\)
( do b, d > 0 )
+) Ta có: \(ad< bc\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\left(b,d>0\right)\)
Để \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) thì \(a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow ab+ad< ab+bc\Leftrightarrow ad< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Để \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) thì \(\left(a+c\right).d< \left(b+d\right).c\Leftrightarrow ad+cd< bc+cd\Leftrightarrow ab< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Chúc Bạn Học Tốt !!!Đạt nhiều thành tích trong học tập
Xem lại đề nha bạn :\(\dfrac{a}{b},\dfrac{c}{d}\left(b,d>0\right)\) chứ