Chứng minh rằng phương trình sau đây vô nghiệm :
\(2x^2-3x+9\)
Chứng tỏ rằng các phương trình sau đây vô nghiệm: 2(1 – 1,5x) + 3x = 0
Ta có: 2(1 – 1,5x) + 3x = 0 ⇔ 2 – 3x + 3x = 0 ⇔ 2 + 0x = 0
Vậy phương trình vô nghiệm.
Chứng tỏ rằng các phương trình sau đây vô nghiệm: 2(x + 1) = 3 + 2x
Ta có: 2(x + 1) = 3 + 2x ⇔ 2x + 2 = 3 + 2x ⇔ 0x = 1
Vậy phương trình vô nghiệm.
Chứng tỏ rằng các phương trình sau vô nghiệm:
a/ x 2 + 3x + 7 = x 2 + 3x – 2 b/ 2x 2 - 6x + 6 = 0
a) \(x^2+3x+7=x^2+3x-2\Leftrightarrow x^2-x^2+3x-3x=-7-2\)
\(\Leftrightarrow0x=-9\)(vô lí)
Vậy phương trình vô nghiệm
b) \(2x^2-6x+6=0\)(xem đề lại nha bn cái này ko vô nghiệm)
chúc bn học tốt!
Chứng tỏ rằng các phương trình sau đây vô nghiệm:
a. 2(x+1)=3+2x2(x+1)=3+2x
b. 2(1−1,5x)+3x=02(1−1,5x)+3x=0
c. |x|=−1
a. Ta có: 2(x+1)=3+2x2(x+1)=3+2x
⇔2x+2=3+2x⇔0x=1⇔2x+2=3+2x⇔0x=1
Vậy phương trình vô nghiệm.
b. Ta có: 2(1−1,5x)+3x=02(1−1,5x)+3x=0
⇔2−3x+3x=0⇔2+0x=0⇔2−3x+3x=0⇔2+0x=0
Vậy phương trình vô nghiệm.
c. Vì |x|≥0|x|≥0 nên phương trình |x|=−1|x|=−1 vô nghiệm.
cứ đưa vào máy vinacal... ra nghiệm ảo thì là vô nghiệm.. hé hé hé :))))
Chứng minh phương trình sau vô nghiệm: \(x^6-2x^5+5x^4-5x^3+6x^2-3x+2=0\)
chứng tỏ rằng các phương trình sau đây vô nghiệm :
a)2(x+1)=2x-1 b)x2+4x+5=0
c)4x2+2x+1=0 d)x2-x+1=0
a) 2(x+1)=2x-1
<=> 2x+2=2x-1
<=> 2x+2-2x+1=0
<=>1=0
=>Pt vô nghiệm
Chứng minh các phương trình sau vô nghiệm:
a) (x-2)3=(x-2).(x2+2x+4)-6.(x-1)2
b)4x2-12x+10=0
Chứng minh các phương trình sau vô số nghiệm:
(x+1).(x2-x-1)=(x+1)3-3x.(x+1)
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
Chứng minh rằng phương trình sau vô nghiệm: \(\left(x+2\right)\sqrt{x+1}=2x+1\)
deo biet
ma may hoc lop 9 roi thi co day roi chu s ngu vai lon ra
bài này tôi dùng cách viết thành bình phương như sau:
Phương trình tương đương:
\(4x+2-2\left(x+2\right)\sqrt{x+1}=0\)
\(\Leftrightarrow x^2+4x+4-2\left(x+2\right)\sqrt{x+1}+x+1-x^2-x-3=0\)
\(\Leftrightarrow\left(\left(x+2\right)-\left(x+1\right)\right)^2=x^2+x+3\)
\(\Leftrightarrow x^2+x+3=1\)
\(\Leftrightarrow x^2+x+2=0\)
Đến đây thì đã quá đơn giản, có lẽ bạn sẽ giải được.
Ta thấy \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
Vậy nên phương trình vô nghiệm (ĐPCM)
Phương trình nào sau đây vô nghiệm?
A. 3 x + 4 x = 5 x B. 2 x + 3 x + 4 x = 3
C. 2 x + 3 x = 5 x D. 2 x + 3 x = 0