Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NT
Xem chi tiết

Tham  khảo:Cho số nguyên tố P. Biết 2P+1 và 4P+1 cũng là số nguyên tố. Tìm P

 Xét các trường hợp : 
+ P = 2 ---> 2P + 1 = 5 (là số n/tố) ; 4P + 1 = 9 (là hợp số nên P = 2 loại) 
+ P = 3 ---> 2P + 1 = 7; 4P + 1 = 13 (đều là số n/tố ---> P = 3 thỏa mãn) 
+ P > 3 
..Vì P là số n/tố và P > 3 ---> P ko chia hết cho 3 ---> P = 3k+1 hoặc P = 3k+2 
a) Nếu P = 3k+1 ---> 2P + 1 = 6k + 3 chia hết cho 3 (là hợp số nên t/h này bị loại) 
b) Nếu P = 3k+2 ---> 4P + 1 = 12k + 9 chia hết cho 3 (là hợp số nên t/h này cũng bị loại) 
Vậy chỉ có 1 đáp án là P = 3

Bình luận (0)
DL
Xem chi tiết
NA
Xem chi tiết

Trả lời :.....................

p = 3.....................

Hk tốt......................

Bình luận (0)
PH
Xem chi tiết
TT
1 tháng 3 2020 lúc 22:07

Gửi bạn nhé, bài này mình đã làm rồi , chúc bạn học tốt !

Bình luận (0)
 Khách vãng lai đã xóa
H24
1 tháng 3 2020 lúc 22:13

p2p2 là số chính phương nên p2p2 chia 7 dư 0,1,2 hoặc 4
- Nếu p2⋮7p2⋮7 thì p⋮7⇒p=7p⋮7⇒p=7 , thay vào thỏa mãn

-Nếu p2p2 chia 7 dư 1 thì 3p2+43p2+4 ⋮7⇒⋮7⇒ trái với đề bài

- Nếu p2p2 chia 7 dư 2 3p2+1⋮7⇒3p2+1⋮7⇒ vô lí

-Nếu p2p2 chia 7 dư 4 2p2−1⋮7⇒2p2−1⋮7⇒ vô lí

Vậy p=7

Bình luận (0)
 Khách vãng lai đã xóa
LN
1 tháng 3 2020 lúc 22:58

Xét với p=2 suy ra 3p2+4 = 3.4+4=16 ( 16 là hợp số) nên p=2  (loại)

Với p=3 suy ra 2p 2+3=2.9+3=21 ( 21 là hợp số) nên p = 3 ( loại)

Với p = 5 suy ra 2p2-1=2.25-1=49 ( 49 là hợp số ) nên p = 5 (loại)

Với p = 7 suy ra 2p2-1=2.49-1=97 (là số nguyên tố)

                        2p 2+3= = 2.49 + 3 = 101(là số nguyên tố)

                          3p2+4 =3.49+4=151 (là số nguyên tố)

p = 7( thỏa mãn)

Với p > 7: Xét các trường hợp 

+ p=7k+1 suy ra   3p2 +4 = 147k2+42k+7 chia hết cho 7 và 147k2+42k+7  > 7 nên  3p2 +4  là hợp số 

+ p=7k+2  (các bạn tự thay vào nhé)

+p=7k+3

+ p=7k + 4

p=7k + 5

+ p = 7k+6

Vậy p=7

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
Xem chi tiết
H24
26 tháng 2 2021 lúc 17:13

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

Bình luận (0)
H24
26 tháng 2 2021 lúc 17:19

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

Bình luận (0)
H24
26 tháng 2 2021 lúc 17:30

Bài 3:

a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố

p + 8 = 2 + 8 = 10 không là số nguyên tố

Vậy p = 2 không thỏa mãn

 Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố

p + 8 = 3 + 8 = 11 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2

Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố

p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p > 3 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất

Bình luận (0)
HP
Xem chi tiết
H24
18 tháng 7 2015 lúc 19:20

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

Bình luận (0)
TL
18 tháng 7 2015 lúc 19:30

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

Bình luận (0)
My
14 tháng 8 2016 lúc 15:35

 câu a là p ko có giá trị chớ

Bình luận (0)
NA
Xem chi tiết
DH
6 tháng 11 2021 lúc 20:46

Với \(p=2\)\(p^3+2=10\)là hợp số (loại). 

Với \(p=3\)\(2p-1=5,p^3+2=29\)đều là số nguyên tố (thỏa mãn) 

Với \(p>3\): khi đó \(p\)có dạng \(3k+1\)hoặc \(3k+2\).

Với \(p=3k+1\)\(p^3+2=\left(3k+1\right)^3+2\equiv1+2\left(mod3\right)\equiv0\left(mod3\right)\)

do đó \(p^3+2\)chia hết cho \(3\)mà \(p^3+2>3\)nên không là số nguyên tố. 

Với \(p=3k+2\)\(2p-1=2\left(3k+2\right)-1=6k+3⋮3\)

mà \(2p-1>3\)nên không là số nguyên tố. 

Vậy \(p=3\).

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết