Những câu hỏi liên quan
PH
Xem chi tiết
KL
Xem chi tiết
ND
Xem chi tiết
NM
9 tháng 11 2021 lúc 21:10

TK: Câu hỏi của Hà Phương Linh - Toán lớp 9 - Học trực tuyến OLM

Bình luận (1)
NK
Xem chi tiết
LD
17 tháng 12 2015 lúc 20:46

lại chứng mik khó chết!

Bình luận (0)
OP
Xem chi tiết
H24
17 tháng 1 2018 lúc 17:14

Ta có nhận xét rằng: Tích của ba số nguyên bất kỳ là một số dương thì trong đó phải tồn tại một số dương.
Do tích của 3 số nguyên bất kỳ trong 25 số đều là số dương nên ta lấy nhóm 3 số bất kỳ và lấy số dương trong đó ra. 
Vậy còn lại 24 số.
Ta chia 24 số này thành 8 nhóm, mỗi nhóm có 3 số.
Vì tích của 3 số nguyên bất kì trong 24 số đó đều dương nên mỗi nhóm, ta đều lấy ra được số một dương.
Vậy thì ta được 8 số dương. Vậy còn lại 24 - 8 = 16 số.
Ta lại lấy một nhóm 3 số bất kỳ, lấy số dương trong đó. Vậy còn lại 16 - 1 = 15 số.
Lại chia 15 số thành 5 nhóm, mỗi nhóm 3 số. Tiếp tục lấy đi 1 số dương trong mỗi nhóm, ta được 5 số.
Ta còn 15 - 5 = 10 số.
Ta lại lấy một nhóm 3 số bất kỳ, lấy số dương trong đó. Vậy còn lại 10 - 1 = 9 số.
Lại chia 9 số thành 3 nhóm 3 số. Tiếp tục lấy đi 3 số dương trong 3 nhóm.
Ta còn 9 - 3 = 6 số.
Ta chia 6 số thành 2 nhóm, tiếp tục lấy đi 2 số dương, ta còn 4 số.
Lấy nhóm 3 số bất kì, chọn được số dương trong đó.
Vậy còn 3 số.
Trong 3 số này lấy một số dương. Vậy chỉ còn 2 số. 
Tích hai số này là số dương nên hoặc chúng cùng âm, cùng dương.
Nếu chúng cùng âm, ta lấy 2 số dương bất kì vừa chọn được trong 23 số kia nhân với một trong hai số đã cho thì được tích âm.
Vậy vô lý.
Từ đó suy ra hai số còn lại cùng dương.
Nói cách khác cả 25 số đều là số dương.

:D

Bình luận (0)
CH
8 tháng 1 2018 lúc 16:27

Câu hỏi của Nguyễn Tuyết Mai - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo lời giải bài tương tự tại đây nhé.

Bình luận (0)
TH
17 tháng 1 2018 lúc 17:13

Ta có:A= (n-1)n(n+1) chia hết cho 504
Ta có: 504=32.7.832.7.8 ; Đặt n=a3a3, cần chứng minh
A=(a3−1)a3(a3+1)(a3−1)a3(a3+1) chia hết cho 504
*Nếu a chẵn thì a3a3 chia hết cho 8; nếu a lẻ thì a3−1a3−1 và a3+1a3+1 là 2 số chẵn liên tiếp nên (a3−1)(a3+1)(a3−1)(a3+1) chia hết cho 8 \Rightarrow mọi trường hợp A đều chia hết cho 8
* Nếu a chia hết cho 7 thì A chia hết cho 7. Nếu a ko chia hết cho 7 thì (a3−1)(a3+1)(a3−1)(a3+1)= a6−1a6−1 chia hết cho 7
*Nếu a chia hết cho 3 thì a^3 chia hết cho 9. Nếu a= 3k+1 hoặc a=3k-1 thì a3a3 = 27k3+27k2+9k+127k3+27k2+9k+1 hoặc a3=27k3−27k2+9k−1a3=27k3−27k2+9k−1, nên a3+1a3+1hoặc a3−1a3−1 sẽ có 1 số chia hết cho 9
\Rightarrow A chia hết cho 7,8,9
\Rightarrow A chia hết cho 504

Bình luận (0)
NT
Xem chi tiết
TN
24 tháng 12 2015 lúc 18:12

trên chtt có đó mình xem rồi

Bình luận (0)
NK
Xem chi tiết
NT
Xem chi tiết
DH
20 tháng 10 2021 lúc 21:59

Gọi \(2021\)số đó là \(a_1,a_2,...,a_{2021}\).

Đặt \(t_1=a_1,t_2=a_1+a_2,...,t_n=a_1+a_2+...+a_n,...,t_{2021}=t_1+...+t_{2021}\).

\(t_1,...,t_{2021}\)có \(2021\)số nên có ít nhất \(2\)trong \(2021\)số trên có cùng số dư khi chia cho \(2020\).

Giả sử đó là \(t_m,t_n\)với \(m>n\).

Khi đó \(t_m-t_n\)chia hết cho \(2020\).

Ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
NT
21 tháng 10 2021 lúc 11:23

đpcm là j ạ

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
ZZ
11 tháng 6 2020 lúc 10:47

Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3

Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)

Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa