a^2/ab+b^2 + b^2/ab-a^2 - a^2+b^2/ab
cho a,b >0, a+b=1
B= 1/a^2+b^2 + 1/ab + 2ab
C=1/a^2+b^2 + 1/ab + 4ab
D=1/a^2+b^2 + 1/ab + 5ab
cho a,b la 2 so thuc biet |a| khác |b| và ab khác 0 thỏa mãn (a-b)/(a^2+ab)+(a+b)/(a^2-ab)="(3a-b)/(a^2-b^2).tinh p=(a^3+2a^2b+3b^3)/(2a^3+ab^2+b^3)
chứng minh rằng: A) ( a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2). B) a3+b3= (a+b)[(a-b)2+ab]
b, ta có a3+ b3 = (a+b)(a2-ab +b2)
= (a+b)(a2 -ab +b2 -ab +ab)
= (a+b) ( a2-2ab +b +ab)
=(a+b) [ (a2-b2) +ab ]
vậy ...........................
đề c/ m : ( a+b)(a2-ab +b2) +(a-b)(a2+ab+b2 ) =2a3
(a+ b)(a2 -ab +b2) + (a-b)(a2+ab +b2)
= a3+b3+a3-b3(hdt)
= 2a3
chúc bạn học tốt
(a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2)
(a+b)(a^2-ab+b^2)-(a-b)(a^2+ab+b^2)=2b^3
\(\left(a+b\right)\left(a^2-ab+b^2\right)-\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a^3+b^3\right)-\left(a^3-b^3\right)=2b^3\left(đpcm\right)\)
tik mik nha
\(\left(a+b\right)\left(a^2-ab+b^2\right)-\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(=a^3+b^3-a^3+b^3\)
\(=2b^3\)
17 :Chứng minh rằng
( a + b ) . ( a^2 - ab + b^2 ) + ( a - b ) . ( a^2 + ab + b^2 ) = 2a^3a^3 + a^3 = ( a+ b ). ( ( a - b )^2 + ab )( a^2 + b^2 ).( c^2 + d^2 ) = ( ac + bd )^2 + ( ad - bc )^2
1/
\(\left(1\right)=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\)
2/
\(\left(2\right)=a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(\left(2\right)=\left(a+b\right).\left[\left(a^2-2ab+b^2\right)+ab\right]=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
3/
\(\left(3\right)=\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)
\(\left(3\right)=\left[\left(ac\right)^2+2acbd+\left(bd\right)^2\right]+\left[\left(ad\right)^2-2adbc+\left(bc\right)^2\right]\)(do t/c giao hoán trong phép nhân => 2acbd=2adbc)
\(\left(3\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
cho a,b,c là số thực dương. Cmr: a/b^2+ bc+c^2 + b/c^2+ ca+a^2 + c/ a^2+ ab+ b^2 >= a/ b^2+ bc + c^2 + b/c^2+ca+a^2 + c/a^2+ab + b^2 >= a+b+c/ab+ bc + ca.
\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)
Chứng minh:
(a-b)^2=a^2-2.ab+b^2
a^2-b^2=(a-b).(a+b)
(a+b)^3=a^3+3.a^2b+3.ab^2+b^3
(a-b)^3=a^3-3.a^2b+3.ab^2-b^3
(a-b)2 = (a-b).(a-b)
= a2 - ab - ab + b2
= a2 - 2ab + b2 (đpcm)
cho |a| khác |b| và ab khác 0 thoả mãn (a−b)/(a^2+ab) + (a+b)/(a^2−ab) = (3a−b)/(a^2−b^2).Tính B=(a^3+2a^2b+3b^2)/(2a^3+a^2b+b^3)