Những câu hỏi liên quan
LD
Xem chi tiết
TL
Xem chi tiết
NT
14 tháng 2 2016 lúc 21:18

a^2+b^2+c^2+2ab+2cb+2ac-a^2-b^2-c^2-2abc>2

2ab+2ca+bc-2abc>2

 

Bình luận (0)
TL
15 tháng 2 2016 lúc 19:53

sao lại từ phần cần chứng minh nhân ra vậy.

Mà bạn làm mình ko hiểu

Bình luận (0)
NV
Xem chi tiết
GC
27 tháng 5 2015 lúc 15:55

a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a² 
tương tự: bc+ab > b²; ca+bc > c² 
cộng lại: 2ab+2bc+2ca > a²+b²+c² (*) 

gthiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)} 
=> 2 > a²+b²+c² (đpcm) 

đúng nha

Bình luận (0)
TL
Xem chi tiết
DA
Xem chi tiết
DT
2 tháng 11 2016 lúc 17:15

Do a,b,c là 3 cạnh của 1 tam giác nên dễ dàng suy ra được a,b,c < 1
Từ đó ta có (1-a)(1-b)(1-c)>0
Suy ra:


Suy ra ĐCCM?

Bình luận (0)
H24
Xem chi tiết
PH
Xem chi tiết
AN
27 tháng 7 2017 lúc 16:39

Ta có:

\(a< b+c\)

\(\Leftrightarrow2a< a+b+c=2\)

\(\Leftrightarrow a< 1\)

Tương tự ta cũng có:

\(\hept{\begin{cases}b< 1\\c< 1\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Leftrightarrow-abc+ab+bc+ca-a-b-c+1>0\)

\(\Leftrightarrow abc< \left(ab+bc+ca\right)-1\)

\(\Leftrightarrow2abc< 2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2+2=4-2=2\)

Bình luận (0)
LT
Xem chi tiết
H24
Xem chi tiết
PT
17 tháng 12 2017 lúc 10:29

Áp dụng BĐT tam giác, ta có: 

         \(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\Rightarrow\hept{\begin{cases}2a< a+b+c\\2b< a+b+c\\2c< a+b+c\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}2a< 6\\2b< 6\\2c< 6\end{cases}\Rightarrow\hept{\begin{cases}a< 3\\b< 3\\c< 3\end{cases}\Rightarrow}}\hept{\begin{cases}3-a>0\\3-b>0\\3-c>0\end{cases}}\)

Áp dụng BĐT Cauchy cho bộ ba số thực không âm, ta có: 

\(\left(3-a\right)\left(3-b\right)\left(3-c\right)\le\left(\frac{3-a+3-b+3-c}{3}\right)^3=1\)

\(\Leftrightarrow27-9\left(a+b+c\right)+3\left(ab+bc+ca\right)-abc\le1\)

\(\Leftrightarrow abc\ge27-9.6+3\left(ab+bc+ca\right)-1\)

\(\Leftrightarrow2abc\ge-56+6\left(ab+bc+ca\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a^2+b^2+c^2\right)+3.2\left(ab+bc+ca\right)-56\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a+b+c\right)^2-56\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3.36-56=\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge52\)

Dấu \("="\) xảy ra khi  \(a=b=c=2\)

Vậy \(3\left(a^2+b^2+c^2\right)+2abc\ge52\)

Bình luận (0)
H24
17 tháng 12 2017 lúc 22:24

Lớp 8 chưa học bất dẳng thức Cauchy nên mik sẽ ko tính vs lại mik làm đc rồi và cảm ơn nha

Bình luận (0)
PT
19 tháng 12 2017 lúc 13:28

Lớp 8 mà chưa học Cauchy thì bạn là học sinh đại trà à, thế mà cũng ra vẻ đăng câu hỏi

Bình luận (0)