(3a-b)/(2a+7) + (3b-a)/(2b-7) với a-b=7;a khác -3,5;b khác 3,5
3a-b/2a+7 + 3b-a/2b-7 với a-b=7
Thay a - b = 7 vào biểu thức ta có :
= 3a-b/2a+(a-b)+3b-a/2b-(a-b)
= 3a-b/2a+a-b+3b-a/2b-a+b
= 3a-b/3a-b+3b-a/3b-a
= 1+1 = 2
Tính giá trị biểu thức
A= (3a-b)/(2a+7) + (3b-a)/(2b-7) (Với a-b=7 ; a,b khác 3,5)
Tính gtrị bthức
\(A=\frac{2a-5b}{a-3b}\)với\(\frac{a}{b}=\frac{6}{8}\)
\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)với a-b=7
***** Ta có \(A=\frac{2a-5b}{a-3b}\)Mà \(\frac{a}{b}=\frac{6}{8}\Leftrightarrow b=\frac{8a}{6}=\frac{4}{3}a\)Thay b vào biểu thức A , ta có : \(\frac{2a-5.\frac{4}{3}a}{a-3.\frac{4}{3}a}=\frac{a\left(2-5.\frac{4}{3}\right)}{a\left(1-3.\frac{4}{3}\right)}=\frac{-14}{3}:\left(-3\right)=\frac{14}{9}\)Vậy \(A=\frac{14}{9}\)
***** Ta có \(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)MÀ a-b=7 => a = b+7 . Thay a = b+7 vào biểu thức B , ta có \(\frac{3.\left(7+b\right)-b}{2\left(7+b\right)+7}+\frac{3b-\left(7+b\right)}{2b-7}=\frac{21+3b-b}{14+2b+7}+\frac{3b-7-b}{2b-7}\)=>>>>> \(\frac{21+2b}{21+2b}+\frac{2b-7}{2b-7}=1+1=2\)(k mình nha )
Tính giá trị của các biểu thức: a) x^3-6x^2-9x-3 với x=-2/3
b) 2a-5b/a-3b với a/b=3/4
c) 3a-b/2a+7 +3b-a/2b-7 với a-b=7 (a;b≠-3,5)
a)Thay \(x=\dfrac{-2}{3}\) vào\(x^3-6x^2-9x-3\):
\(\left(\dfrac{-2}{3}\right)^3-6\left(\dfrac{-2}{3}\right)^2+9.\dfrac{2}{3}-3\)
\(=\dfrac{-8}{27}-\dfrac{8}{3}+6-3\)
\(=\dfrac{-8-72}{27}+3=\dfrac{-80}{27}+3=\dfrac{1}{27}\)
b) Ta có: \(\dfrac{a}{b}=\dfrac{3}{4}\Rightarrow a=3k;b=4k\)
\(\Rightarrow\dfrac{2a-5b}{a-3b}=\dfrac{6k-20k}{3k-12k}=\dfrac{-14k}{-9k}=\dfrac{14}{9}\)
c) Có: a-b=7\(\Rightarrow a=b+7\)
Thay vào \(\dfrac{3a-b}{2a+7}+\dfrac{3b-a}{2b-7}=\dfrac{2b+21}{2b+21}+\dfrac{2b-7}{2b-7}\)
\(=1+1=2\)
Cho biểu thức
P=\(\dfrac{3a-b}{2a+7}\)+\(\dfrac{3b-a}{2b-7}\)
Tính giá trị của P khi a-b=7
a-b=7 nên a=b+7
\(P=\dfrac{3\left(b+7\right)-b}{2\left(b+7\right)+7}+\dfrac{3b-b-7}{2b-7}=1+1=2\)
\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}vsa-b=7\left(a\ne-\frac{7}{2};b\ne\frac{7}{2}\right)\)
Ta có: \(a-b=7\)
\(\Rightarrow b-a=-7\)
\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)
\(B=\frac{2a+\left(a-b\right)}{2a+7}+\frac{2b+\left(b-a\right)}{2b-7}\)
\(B=\frac{2a+7}{2a+7}+\frac{2b-7}{2b-7}\)
\(B=1+1\)
\(B=2\)
Vậy \(B=2\)
Tham khảo nhé~
\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)
\(=\frac{2a+\left(a-b\right)}{2a+7}+\frac{2b-\left(a-b\right)}{2b-7}\)
\(=\frac{2a+7}{2a+7}+\frac{2b-7}{2b-7}\) (vì a - b = 7)
\(=1+1=2\)
a)\(\frac{2a-5b}{a-3b}\)với \(\frac{a}{b}=\frac{3}{4}\)
b)\(\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}v\text{ới}\)\(a-b\ne3,5;b\ne3,5\)
Ta có :
\(\frac{a}{b}=\frac{3}{4}\)\(\Rightarrow\)\(a=3k;b=4k\)\(\left(k\in\right)ℤ\)
Suy ra :
\(\frac{2a-5b}{a-3b}=\frac{6k-20k}{3k-12k}=\frac{k\left(6-20\right)}{k\left(3-12\right)}=\frac{-14}{-9}=\frac{14}{9}\)
cho : 2a-b=7. với b khác 7/2; b khác -7/3. tính P= \(\frac{5a-b}{3a+7}-\frac{3b-2a}{2b-7}\)
Đề ôn tập HK 2 - Đề 8
Bài 1:
a) Biết -3a - 1 > -3b - 1. So sánh a và b?
b) Biết 4a + 3 < 4b + 3. So sánh a và b?
Bài 2: Biết a < b, hãy so sánh:
a) 3a - 7 và 3b - 7. b) 5 - 2a và 3 - 2b
c) 2a + 3 và 2b + 3. d) 3a - 4 và 3b - 3
Bài 3: a) Chứng minh pt: x² + 6x + 11 = 0 vô nghiệm
b) Chứng minh bất pt: 5x² + 16 ≥ 0 có vô số nghiệm.
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai