Tìm GTNN của phân thức: A=x^2-4x+1/x^2
Tìm GTNN của phân thức
X^2-4x+1/x^2
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
1. phân tích đa thức thành nhân tử:
a, x^2 - x - 121
b, 81x^2 + 4
2. Tìm GTNN của A biết A=x^2 - 4x + 1
1. \(x^2-x+\frac{1}{4}-\frac{485}{4}=\left(x-\frac{1}{2}\right)^2-\frac{485}{4}=\left(x-\frac{1}{2}-\frac{\sqrt{485}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{485}}{2}\right)=\left(x-\frac{1+\sqrt{485}}{2}\right)\left(x+\frac{\sqrt{485}-1}{2}\right)\)
2) \(81x^2+4=4\left(\frac{81}{4}x^2+1\right)\)
3) \(A=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3\ge-3\)=> Min A =-3 <=> x=2
. Nhớ L I K E
1.
\(a,x^2-x-121\)\(=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{485}{4}\)\(=\left(x-\frac{1}{2}\right)^2-\frac{485}{4}\)\(=\left(x-\frac{1}{2}-\frac{\sqrt{485}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{485}}{2}\right)\)
\(b,81x^2+4\)\(=\left(9x^2\right)^2+2^2=\left[\left(9x^2\right)^2+36x^2+2^2\right]-36x^2\)
\(=\left(9x^2+2\right)^2-\left(6x\right)^2\)\(=\left(9x^2+2-6x\right)\left(9x^2+2+6x\right)\)
2.
\(A=x^2-4x+1=\left(x^2-2.x.2+4\right)-3\)\(=\left(x-2\right)^2-3\)
Vì \(\left(x-2\right)^2\ge0\)\(\Rightarrow\left(x-2\right)^2-3\ge-3\)
Dấu ''='' xảy ra khi x-2=0 => x=2
Vậy GTNN của A là A=-3 khi x=2
A=x^3 - 4x^2 + 7x - 6 / x - 2
a) rút gọn phân thức A
b) tìm GTNN của biểu thức vừa tìm được ở câu a)
Tìm GTNN của biểu thức A=(x^2-4x+1)/(x^2)
(x^2-4x+1)/(x^2)
=(x^2-4x+4-3)/(x^2)
=(x-2)^2-3 /(x^2)
x^2 > 0 \Rightarrow biểu thức đạt gtnn khi (x-2)^2-3 có giá tri âm
(x-2)^2 > hoac = 0\Rightarrow gtnn của tử số là -3
khi đó: (x-2)^2=0\Rightarrow x-2=0\Rightarrow x=2
\Rightarrow mẫu số là 2^2=4
vậy gtnn của bt là -3/4
Có gì sai sót mọi người góp ý hộ nha!
Ta có: \(A=\frac{x^2-4x+1}{x^2}\Leftrightarrow x^2\left(A-1\right)+4A-1=0\)
Để PT này có nghiệm thì: ∆' \(\ge0\)
\(\Leftrightarrow4+\left(A-1\right)\ge0\)
\(\Leftrightarrow A\ge-3\)
Đạt được khi x = 0,5
Tìm GTNN của biểu thức A=(x^2+4x+12)/(x+1)^2 với x#-1
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
1)Tìm GTNN của bt:
a) A=x2(x-1)2+2x2-4x-1
b) B=(x-5)(x-3)(x+2)(x+4)+2022
2)
a) Phân tích đa thức thành nhân tử
x3-2x2+26x-24
b) Với n là số nguyên . CMR: 7n3-9n2+26n-12
2.a) (ko phân tích được, bạn coi lại nhé)
b) phần còn lại của chứng minh là gì thế bạn?
Cho phân thức: \(P=\dfrac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}\)
a, Rút gọn phân thức P
b, Với x > 0. Tìm giá trị của x để phân thức P có GTNN.