Những câu hỏi liên quan
DT
Xem chi tiết
VS
Xem chi tiết
H24
3 tháng 9 2018 lúc 15:19

Ta có :\(\left(a-b\right)^2\ge0\forall a,b\)

         \(\Leftrightarrow a^2-2ab+b^2\ge0\)

Mà \(a^2+b^2=c^2\left(Py-ta-go\right)\)

\(\Rightarrow c^2-2ab\ge0\)

\(\Leftrightarrow c^2\ge2ab\)

\(\Leftrightarrow2c^2\ge a^2+b^2+2ab\)( Do c2=a2+b2)

\(\Leftrightarrow2c^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow c\sqrt{2}\ge a+b\)( ĐPCM ) 

Bình luận (0)
TA
3 tháng 9 2018 lúc 15:28

Ta có a+b \(\le\)c√2

<=> (a+b) 2\(\le\)(c√2)2

<=> a2+2ab+b2\(\le\)2c2

<=> a2+2ab+b2 \(\le\)2(a2+b2) = 2a2+2b2

<=> 0 \(\le\)a2-2ab+b2 = (a-b)2 ( luôn đúng)

=> a+b \(\le\)c√2

Bình luận (0)
H24
15 tháng 4 2019 lúc 18:04

Dựa vàu định lý py-ta-go ta có: \(a^2+b^2=c^2\)

Mà \(\left(a-b\right)^2\ge0\forall a,b\)\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow c^2-2ab\ge0\Leftrightarrow c^2\ge2ab\Leftrightarrow2c^2\ge c^2+2ab\Leftrightarrow2c^2\ge a^2+b^2+2ab\)\(\Leftrightarrow2c^2\ge\left(a+b\right)^2\Leftrightarrow c\sqrt{2}\ge a+b\)(đpcm)

Bình luận (0)
H24
Xem chi tiết
HN
17 tháng 8 2016 lúc 7:19

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

Bình luận (0)
NT
Xem chi tiết
HT
21 tháng 2 2016 lúc 10:18

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

\(\Leftrightarrow\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{a^2b^2c^2}=64\)(*)

Ta có :\(\left(a+b\right)^2\ge4ab\) ; \(\left(b+c\right)^2\ge4bc\) ; \(\left(c+a\right)^2\ge4ca\)

Suy ra vế trái của (*) lớn hơn hoặc = 64. Dấu đẳng thức xảy ra khi a = b = c. Khi đó tg ABC đều.

Bình luận (0)
H24
13 tháng 8 2017 lúc 15:14

chưngs minh tam giác abc đều mà sao lại nói tam giác abc ko đều

Bình luận (0)
CN
Xem chi tiết
DH
20 tháng 6 2018 lúc 16:03

vì a;b;c là độ dài 3 cạnh của 1 tam giác áp dụng bđt tam giác ta có\(\Rightarrow\hept{\begin{cases}a+b>c\Rightarrow a+b-c>0\\a+c>b\Rightarrow a+c-b>0\\b+c>a\Rightarrow b+c-a>0\end{cases}}\)

\(\Rightarrow\sqrt{a+b-c};\sqrt{a+c-b};\sqrt{b+c-a}\)luôn được xác định\(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)>=0\Rightarrow a+b-c-2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}+a+c-b\)\(>=0\Rightarrow a+b-c+a+c-b>=2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\Rightarrow\frac{a+b-c+a+c-b}{2}=\frac{2a}{2}\)

\(=a>=\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\)

tương tự ta có :\(b>=\sqrt{\left(a+b-c\right)\left(b+c-a\right)};c>=\sqrt{\left(a+c-b\right)\left(b+c-a\right)}\)

\(\Rightarrow abc>=\sqrt{\left(a+b-c\right)^2\left(a+c-b\right)^2\left(b+c-a\right)^2}=\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

dấu = xảy ra khi a=b=c

Bình luận (0)
DH
20 tháng 6 2018 lúc 16:07

dòng 3 là vì  \(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)^2>=0\)nhá

Bình luận (0)
NP
Xem chi tiết
CN
Xem chi tiết
NN
Xem chi tiết
OA
Xem chi tiết
LD
18 tháng 4 2022 lúc 21:08

non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì

 

Bình luận (1)
LD
18 tháng 4 2022 lúc 21:08

đúng trẻ trâu

Bình luận (0)