Cho các số nguyên tố p, q, r và n là số tự nhiên lẻ thỏa mãn: pn + qn = r2
CMR: n = 1
Câu 1
Tìm 3 số nguyên tố liên tiếp p,q,r sao cho p2+q2+r2 cũng là số nguyên tố
Câu 2
Tìm bộ 3 số nguyên tố a,b,c sao cho abc<ab+bc+ca
Câu 3
Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng có vô số số tự nhiên n thỏa mãn n.2n-1 chia hết cho p
Câu 4
Cho p là số nguyên tố, chứng minh rằng số 2p-1 chỉ có ước nguyên tố có dạng 2pk+1
Câu 5
Giả sử p là số nguyên tố lẻ và m=\(\frac{9^p-1}{8}\) . Chứng minh rằng m là hợp số lẻ không chia hết cho 3 và 3m-1= 1 ( mod m)
Cho n là số tự nhiên thỏa mãn:\(2^n-1\)là số nguyên tố.
CMR:n là số nguyên tố
câu trả lời của mình là =3 vì:
- 23=4-1=3 là số nguyên tố thỏa mẵn yêu cầu
1)Tìm ƯCLN(2n+1;9n+5) với n thuộc N
2)Tìm số nguyên tố p sao cho:p+4;p+10;p+14 đều là số nguyên tố
3)Tìm ba số tự nhiên lẻ liên tiếp đều là số nguyên tố
4)Tìm số tự nhiên a nhỏ nhất thỏa mãn:a chia cho 4 dư 3;a chia cho 17 dư 9;a chia cho 19 dư 13
5)Hãy tính tổng các ước số của A=(2^17).5
6)Cho S=1+5+5^2+5^3+...+5^20.Tìm số tự nhiên n thỏa mãn:4S+1=5^n
Cho m,n là các số tự nhiên và p là số nguyên tố thỏa mãn p/m-1=m-n/p.Tính A=p2-n
Tìm các số tự nhiên n thỏa mãn \(2^n+1\)và \(2^n-1\)đều là số nguyên tố
Ai đúng mình tik cho
Giả sử n\(\ge\)3 thì \(2^n+1\)và 2\(2^n-1\) ko chia hết cho 3 vì là số nguyên tố .
Ta có \(2^n+1;2^n;2^n-1\)là 3 số tự nhiên liên tiếp nên sẽ có 1 số chia hết cho 3 mà \(2^n+1\)và \(2^n-1\)ko chia hết cho 3 nên 2n chia hết cho 3 . Vô lý vậy n<3 . Từ đó thế n=2 , n=1 , n=0 vào rồi thử xem thỏa mãn hay ko rồi ra
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
cho m,n là các số tự nhiên và p là số nguyên tố thỏa mãn p/m-1=m+n/p, tính A=p2-n
Cho m, n là các số tự nhiên và p là số nguyên tố thỏa mãn p/m-1=m+n/p. Tính A=p^2 -n ta được p=................
Cho m, n là các số tự nhiên và p là số nguyên tố thỏa mãn p / m-1 = m+n / p . Tính A = p^2 - n ta được A =?