cho 4 số dương thoả mãn a,b,c,d,biết a/b =c/d.a^2=b^2+c^2
chứng minh 1/d^2=1/b^2+1/c^2
cho 4 số dương thoả mãn a,b,c,d:a/b =c/d.a^2=b^2+c^2
chứng minh 1/d^2=1/b^2+1/c^2
1) Cho a, b, c ∈ [0;1] và a + b + c = 2. CMR ab + bc + ca ≥ 2abc + \(\dfrac{20}{27}\)
2) Cho a, b, c ∈ [1;3] và a + b + c = 6. CMR a3 + b3 + c3 ≤ 36
3) Cho các số dương a, b, c, d thoả mãn a + b + c + d = 4. CMR \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+d^2}+\dfrac{d}{1+a^2}\) ≥ 2
1.
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với \(\dfrac{2}{3}\), không mất tính tổng quát, giả sử đó là b và c
\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\ge0\)
Mặt khác \(0\le a\le1\Rightarrow1-a\ge0\)
\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\left(1-a\right)\ge0\)
\(\Leftrightarrow-abc\ge\dfrac{4a}{9}+\dfrac{2b}{3}+\dfrac{2c}{3}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}\)
\(\Leftrightarrow-abc\ge-\dfrac{2a}{9}+\dfrac{2}{3}\left(a+b+c\right)-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}=-\dfrac{2a}{9}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc+\dfrac{8}{9}\)
\(\Leftrightarrow-2abc\ge-\dfrac{4a}{9}-\dfrac{4ab}{3}-\dfrac{4ac}{3}-2bc+\dfrac{16}{9}\)
\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{ab}{3}-\dfrac{ac}{3}-bc+\dfrac{16}{9}\)
\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(b+c\right)-bc+\dfrac{16}{9}\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(2-a\right)-\dfrac{\left(b+c\right)^2}{4}+\dfrac{16}{9}\)
\(\Rightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}+\dfrac{a^2}{3}-\dfrac{2a}{3}-\dfrac{\left(2-a\right)^2}{4}+\dfrac{16}{9}\)
\(\Rightarrow ab+bc+ca-2abc\ge\dfrac{a^2}{12}-\dfrac{a}{9}+\dfrac{7}{9}=\dfrac{1}{12}\left(a-\dfrac{2}{3}\right)^2+\dfrac{20}{27}\ge\dfrac{20}{27}\)
\(\Rightarrow ab+bc+ca\ge2abc+\dfrac{20}{27}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)
2.
Đặt \(\left(a;b;c\right)=\left(x+1;y+1;z+1\right)\Rightarrow\left\{{}\begin{matrix}x;y;z\in\left[0;2\right]\\x+y+z=3\end{matrix}\right.\)
Ta có: \(P=\left(x+1\right)^3+\left(y+1\right)^3+\left(z+1\right)^3\)
\(P=x^3+y^3+z^3+3\left(x^2+y^2+z^2\right)+12\)
Không mất tính tổng quát, giả sử \(x\ge y\ge z\Rightarrow x\ge1\)
\(\Rightarrow\left\{{}\begin{matrix}y^3+z^3=\left(y+z\right)^3-3yz\left(y+z\right)\le\left(y+z\right)^3\\y^2+z^2=\left(y+z\right)^2-2yz\le\left(y+z\right)^2\end{matrix}\right.\)
\(\Rightarrow P\le x^3+\left(3-x\right)^3+3x^2+3\left(3-x\right)^2+12\)
\(\Rightarrow P\le15x^2-45x+66=15\left(x-1\right)\left(x-2\right)+36\le36\)
(Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\))
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(2;1;0\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(1;2;3\right)\) và các hoán vị
cho a, b, c, d là các sô dương thoả mãn \(a^2+b^2=1\) và \(\frac{a^4}{c}+\frac{b^4}{d}=\frac{1}{c+d}\)chứng minh rằng \(\frac{a^2}{c}+\frac{d}{b^2}\ge2\)
Cho 4 số nguyên dương a<b<c<d thoả mãn ad=bc.Giả sử a+d và b+c là các luỹ thừa của 2. Chứng minh a=1
???????????/ đề kiểu j vậy?
Cho a,b,c,d là các số dương thỏa mãn a^2 + b^2=1 và a^4/c+b^4/d=1/c+d.Chứng minh rằng:a^2/c+d/b^2>=2
Cho 4 số nguyên dương a<b<c<d
thoả mãn ad=bc.Giả sử a+d và b+c là các luỹ thừa của 2. Chứng minh a=1
ko mất tính tổng quát ta giả sử a<b<c<d
+ a=1 thì hiển nhiên
+TH: a>1
a+d và b+c là các lũy thừa của 2 nên $a=2^{x}-mvàvàd=2^{y}+m$
a+d là lũy thừa của 2 nên x=y do đó $a=2^{x}-mvàvàd=2^{x}+m$
tương tự với b+c có $b=2^{y}-nvàvàc=2^{y}+n$
từ điều kiện a<b<c<d bạn có vô lý
cho a, b, c, d là 4 số nguyên dương thỏa mãn: b=a+c/2 và 1/c=1/2.(1/b+1/d) Chứng minh rằng a/b=c/d
Cho a, b, c, d là các số dương thỏa mãn a + b + c + d = 4. Chứng minh rằng:
a/b^2+1 + b/c^2+1 +c/d^2+1 +d/a^2+1 >=2
Áp dụng BĐT Cauchy ta có:
\(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)
Áp dụng tương tự ta được
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+d^2}\ge c-\frac{cd}{2};\frac{d}{1+a^2}\ge c-\frac{da}{2}\)
Tương tự ta cũng được
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}=\frac{\left(a+c\right)\left(b+d\right)}{2}\le\frac{\left(a+b+c+d\right)^2}{8}=2\)
Do vậy ta được \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\)
Dấu "=" xảy ra khi a=b=c=d=1
Cho a,b,c là các số dương thoả mãn a+b+c=3 Chứng minh rằng 1/(4a^2+b^2+c^2)+1/(a^2+4b^2+c^2)+1/(a^2+b^2+4c^2)>=1/2