chứng tỏ 6n +5 và 3n+2 là số nguyên tố cùng nhau với n thuộc N
Với số tự nhiên n,chứng tỏ các cặp số sau là số nguyên tố cùng nhau.
a)2n + 3 và 3n + 5 c,3n + 4 và 4n + 5
b)5n + 3 và 7n + 5 d,4n + 1 và 6n + 2
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
chứng tỏ rằng 3n+4 và 4n+5 là 2 số nguyên tố cùng nhau với mọi n thuộc N
gọi uoc chung cua 3n + 4 va 4n+5 là x
ta co
3n+4chia het cho x suy ra 12n+16 chia het cho x
4n+5 chia het cho x suy ra 12n+15 chia het cho x
suy ra 12n+16-12n+15=1 chia het cho x suy ra x =1
vay 4n+5 và 3n+4 nguyen to cung nhau
Gọi ƯCLN (3n+4,4n+5) là d ( d thuộc N*)
suy ra 3n+4 chia hết cho d , 4n+5 chia hết cho d.
Xét 3n+4 chia hết cho d
suy ra 4(3n+4) chia hết cho d
hay 12n+16 chia hết cho d (1)
4n+5chia hết cho d
suy ra 3(4n+5) chia hết cho d
hay 12n+15 chia hết cho d (2)
(1),(2) suy ra (12n+16)-(12n+15)chia hết cho d.
1 chia hết cho d
suy ra d=1
suy ra ƯCLN(3n+4,4n+5)=1
Vậy 3n+4,4n+5 là 2 số nguyên tố cùng nhau
Gọi d là ƯC(3n + 4 , 4n + 5)
Ta có :
\(\hept{\begin{cases}3n+4⋮d\\4n+5⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}12n+16⋮d\\12n+15⋮d\end{cases}}\)
( 12n + 16 ) - ( 12n + 15 )
= 12n + 16 - 12n - 15
= 1
Vì ƯCLN(3n + 4 , 4n + 5) = 1 nên d chỉ có thể = 1
Vì ƯCLN của hai số nguyên tố cùng nhau luôn luôn = 1
=> 3n + 4 và 4n + 5 là hai số nguyên tố cùng nhau
Học tốt nhrs bạn !
Bài 2: CMR
a,7n+10 và 5n+7 là 2 số nguyên tố cùng nhau (n thuộc N)
b,2n+1 và 6n+5 là 2 số nguyên tố cùng nhau ( n thuộc N )
c,n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( n thuộc N )
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
Chứng tỏ rằng các cặp số sau nguyên tố cùng nhau với mọi số tự nhiên n: a, 2n + 1 và 6n + 5 b, 3n + 2 và 5n + 3
a: Gọi d=ƯCLN(6n+5;2n+1)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)
=>\(2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(3n+2;5n+3)
=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
=>\(15n+10-15n-9⋮d\)
=>\(1⋮d\)
=>d=1
=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau
Chứng tỏ 2n 5 và 3n 4 n thuộc N là 2 số nguyên tố cùng nhau
em ko biết là em đúng hay sai chị thông cảm nhé
Chứng tỏ 2n+5 và 3n+4(n thuộc N)là 2 số nguyên tố cùng nhau
chứng tỏ rằng 2 số sau là hai số nguyên tố cùng nhau với mọi số tự nhiên n
a, 2n + 1 và 6n +5
b, 2n+1 và 3n +1
đừng để anh nóng hơi mệt đấy
1) Chứng tỏ : 2n+5 và 3n+7 ( n thuộc N) là 2 số nguyên tố cùng nhau
Gọi UCLN (2n+5;3n+7) là d
Ta có : 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n +15 chia hết cho d
=> 3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
Ta có : (6n+15)-(6n+14)=1 chia hết cho d => d=1
Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Cho 10 điểm phân biệt trong đó có 3 điem thẳng hàng.Hỏi có bao nhiêu đường thẳng phân biệt được tạo thành đi qua 2 điem trong số các điểm ở trên
(3x+22):8+10=12
5-|3-x|=3