Những câu hỏi liên quan
2N
Xem chi tiết
DX
28 tháng 11 2021 lúc 10:58

Ta có \(\left(x-\dfrac{2}{7}\right)^{2008}\ge0\) với mọi x

           \(\left(0,2-\dfrac{1}{5}y\right)^{2010}\ge0\) với mọi y 

           \(\left(-1\right)^{200}=1\) 

\(\Rightarrow N=\left(x-\dfrac{2}{7}\right)^{2008}+\left(0,2-\dfrac{1}{5}y\right)^{2010}+\left(-1\right)^{200}\ge1\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{2}{7}\right)^{2008}=0\\\left(0,2-\dfrac{1}{5}y\right)^{2010}=0\end{matrix}\right.\) 

                              \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{7}=0\\0,2-\dfrac{1}{5}y=0\end{matrix}\right.\) 

                              \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\\dfrac{1}{5}y=0,2\end{matrix}\right.\) 

                              \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\) 

Vậy Nmin = 1 \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\) 

Bình luận (1)
BV
Xem chi tiết
PD
15 tháng 11 2017 lúc 23:08

\(N=\left(x-\frac{2}{7}\right)^{2008}+\left(0,2-\frac{1}{5y}\right)^{2010}+\left(-1\right)^{200}\)

Ta có : \(\left(x-\frac{2}{7}\right)^{2008}\ge0\);\(\left(0,2-\frac{1}{5y}\right)^{2010}\ge0\)

\(\Rightarrow N=\left(x-\frac{2}{7}\right)^{2008}+\left(0,2-\frac{1}{5y}\right)^{2010}+\left(-1\right)^{200}\)

Dấu "=" xảy ra khi Min \(N=0+0+1=1\)

Bình luận (0)
PT
Xem chi tiết
TT
Xem chi tiết
KS
16 tháng 7 2018 lúc 20:31

Bài 2:

\(P=2010-\left(x+1\right)^{2008}\)

Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)

\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010\forall x\)

\(P=2010\Leftrightarrow\left(x+1\right)^{2008}=0\Leftrightarrow x=-1\)

Vậy \(x=-1\)thì \(B_{max}=2010\)

Bình luận (0)
H24
16 tháng 7 2018 lúc 20:56

Bài 1:

\(D=\frac{x+5}{|x-4|}\)

Ta có: \(|x-4|\ge0\forall x\)

\(\Rightarrow D=\frac{x+5}{|x-4|}=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)

Vì 1 không đổi

Nên để D đạt GTNN thì: \(\frac{9}{x-4}\)phải đạt GTLN

\(\Rightarrow x-4\)phải đạt GTLN

\(\Rightarrow x=13\)

GTNN của \(D=1+\frac{9}{x-4}=1+\frac{9}{13-4}=1+\frac{9}{9}=1+1=2\)

Vậy x=3 thì D đạt GTNN
Bài 2:

\(P=2010-\left(x+1\right)^{2008}\)

Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)

\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010-0\)

\(\Rightarrow P\le2010\)

\(\Rightarrow\)GTLN của P=2010

\(\Leftrightarrow\left(x+1\right)^{2008}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy x=-1 thì P đạt GTLN

Bình luận (0)
TN
Xem chi tiết
TK
Xem chi tiết
QA
19 tháng 2 2021 lúc 12:49

Trả lời:

Bài 1: a,

\(A=\left|x-1\right|+3\)

Vì \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)

Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)

Vậy GTNN của A = 3 khi x = 1

\(B=\left|x-7\right|-4\)

Vì \(\left|x-7\right|\ge0\forall x\)

  \(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)

Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)

Vậy GTNN của B = -4 khi x = 7

b, \(C=-\left|x-3\right|+2\)

Vì \(\left|x-3\right|\ge0\forall x\)

\(\Rightarrow-\left|x-3\right|\le0\forall x\)

\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)

Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)

Vậy GTLN của C = 2 khi x = 3

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
YB
Xem chi tiết
RL
Xem chi tiết
TL
11 tháng 5 2015 lúc 22:29

Vì (x+1)2008 \(\ge\) 0 với mọi x => - (x+1)2008 \(\le\) 0 => 20  - (x+1)2008 \(\le\) 20 + 0 = 20 với mọi x

=> A lớn nhất bằng 20 khi x+ 1= 0 <=> x = -1

b) Vì (x-1)2 \(\ge\) 0 với mọi x =>  (x-1) + 90  \(\ge\) 0 + 90 = 90 với mọi x 

=> B nhỏ nhất = 90 khi x -1 = 0 <=> x = 1 

Bình luận (0)
MU
11 tháng 5 2015 lúc 20:49

đấy nha, tự trả lời đê, ai bảo nói mk kia

Bình luận (0)
DD
11 tháng 5 2015 lúc 22:18

Không nên làm vậy ... giúp cho ...

Bình luận (0)