2N

tìm GTNN của biểu thức sau

N=(X-2/7)^2008+(0,2-1/5.y)^2010+(-1)^200

DX
28 tháng 11 2021 lúc 10:58

Ta có \(\left(x-\dfrac{2}{7}\right)^{2008}\ge0\) với mọi x

           \(\left(0,2-\dfrac{1}{5}y\right)^{2010}\ge0\) với mọi y 

           \(\left(-1\right)^{200}=1\) 

\(\Rightarrow N=\left(x-\dfrac{2}{7}\right)^{2008}+\left(0,2-\dfrac{1}{5}y\right)^{2010}+\left(-1\right)^{200}\ge1\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{2}{7}\right)^{2008}=0\\\left(0,2-\dfrac{1}{5}y\right)^{2010}=0\end{matrix}\right.\) 

                              \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{7}=0\\0,2-\dfrac{1}{5}y=0\end{matrix}\right.\) 

                              \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\\dfrac{1}{5}y=0,2\end{matrix}\right.\) 

                              \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\) 

Vậy Nmin = 1 \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\) 

Bình luận (1)

Các câu hỏi tương tự
2N
Xem chi tiết
BV
Xem chi tiết
TT
Xem chi tiết
PT
Xem chi tiết
HT
Xem chi tiết
TB
Xem chi tiết
HV
Xem chi tiết
VN
Xem chi tiết
NH
Xem chi tiết