cho a, b , c lập thành 1 cấp số cộng
1, a2 + 8bc = ( 2b +c ) 2
Cho ba số dương a, b, c theo thứ tự lập thành cấp số cộng. Giá trị lớn nhất của biểu thức P = ( a 2 + 8 b c ) + 3 ( 2 a + c ) 2 + 1 có dạng x y ( x , y ∈ N ) . Hỏi x+y bằng bao nhiêu
A. 9
B. 11
C. 13
D. 7
chứng minh rằng nếu ba số a , b ,c lập thành một cấp số cộng thì : a2+8bc=(2b+c)2
Chứng minh rằng nếu các số a 2 , b 2 , c 2 lập thành một cấp số cộng a , b , c ≠ 0 thì các số 1 / b + c , 1 / c + a , 1 / a + b cũng lập thành một cấp số cộng.
1. tìm a để 3 số a; 2a + 1; 5a - 2 lập thành một cấp số cộng
2. tìm b để 3 số 2b - 1; 2b; 2 - b lập thành một cấp số cộng
1: Để a;2a+1;5a-2 lập thành cấp số cộng thì
\(\left[{}\begin{matrix}a=2\left(2a+1+5a-2\right)\\2a+1=2\left(a+5a-2\right)\\5a-2=2\left(a+2a+1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2\left(7a-1\right)=a\\2\left(6a-2\right)=2a+1\\5a-2=2\left(3a+1\right)\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}14a-2=a\\12a-4-2a-1=0\\5a-2-6a-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{2}{13}\\a=\dfrac{5}{12}\\a=-4\end{matrix}\right.\)
2:
Để ba số này lập thành cấp số cộng thì
\(\left[{}\begin{matrix}2b-1=2\left(2b+2-b\right)\\2b=2\left(2b-1+2-b\right)\\2-b=2\left(2b-1+2b\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2b-1=2\left(b+2\right)\left(loại\right)\\2b=2\left(b+1\right)\left(loại\right)\\2-b=2\left(4b-1\right)\end{matrix}\right.\)
=>8b-2=2-b
=>9b=4
=>b=4/9
Cho ba số dương a,b,c theo thứ tự lập thành cấp số cộng. Giá trị lớn nhất của biểu thức \(P=\dfrac{\sqrt{a^2+8bc}+3}{\sqrt{\left(2a+c\right)^2+1}}\) có dạng \(x\sqrt{y}\) (x,y thuộc N). Hỏi x+y bằng bao nhiêu?
Cho ba số thực a, b, c khác 0. Xét các phát biểu sau
(1) Nếu a, b, c theo thứ tự đó lập thành cấp số cộng
(công sai khác 0) thì ba số 1 a , 1 b , 1 c theo thứ tự đó
cũng lập thành cấp số cộng
(2) Nếu a, b, c theo thứ tự đó lập thành cấp số nhân
thì ba số 1 a , 1 b , 1 c theo thứ tự đó cũng lập thành cấp
số nhân.
Khẳng định nào sau đây là đúng ?
A. (1) đúng, (2) sai
B. cả (1) và (2) đúng
C. cả (1) và (2) sai
D. (2) đúng, (1) sai
Ba số \(\frac{2}{{b - a}},\frac{1}{b},\frac{2}{{b - c}}\) theo thứ tự lập thành cấp số cộng. Chứng minh rằng ba số \(a,b,c\) theo thứ tự lập thành cấp số nhân.
Ba số \(\frac{2}{{b - a}},\frac{1}{b},\frac{2}{{b - c}}\) theo thứ tự lập thành cấp số cộng nên ta có:
\(\begin{array}{l}\frac{2}{{b - a}} + \frac{2}{{b - c}} = 2.\frac{1}{b} \Leftrightarrow \frac{1}{{b - a}} + \frac{1}{{b - c}} = \frac{1}{b} \Leftrightarrow \frac{{\left( {b - c} \right) + \left( {b - a} \right)}}{{\left( {b - a} \right)\left( {b - c} \right)}} = \frac{1}{b}\\ \Leftrightarrow \frac{{b - c + b - {\rm{a}}}}{{{b^2} - ab - bc + ac}} = \frac{1}{b} \Leftrightarrow \frac{{2b - c - {\rm{a}}}}{{{b^2} - ab - bc + ac}} = \frac{1}{b} \Leftrightarrow b\left( {2b - c - {\rm{a}}} \right) = {b^2} - ab - bc + ac\\ \Leftrightarrow 2{b^2} - bc - {\rm{ab}} = {b^2} - ab - bc + ac \Leftrightarrow {b^2} = {\rm{a}}c\end{array}\).
Vậy ba số \(a,b,c\) theo thứ tự lập thành cấp số nhân.
cho 4 số a b c d theo thứ tự lập thành 1 cấp số cộng và 4 số a-2, b-6, c-7, d-2 theo thứ tự là 1 cấp số nhân. Tìm a b c d
Xác định a để 3 số : 1 + 3 a ; a 2 + 5 ; 1 - a theo thứ tự lập thành một cấp số cộng?
A. Không có giá trị nào của a
B. a=0
C. a = ± 1
D. a = ± 2