Những câu hỏi liên quan
H24
Xem chi tiết
NT
28 tháng 4 2020 lúc 11:56

https://olm.vn/hoi-dap/detail/54833154236.html

Bình luận (0)
AV
Xem chi tiết
NN
Xem chi tiết
GM
26 tháng 1 2016 lúc 14:22

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

Bình luận (0)
ND
8 tháng 5 2024 lúc 22:09

0

Bình luận (0)
NT
Xem chi tiết
NN
Xem chi tiết
TL
3 tháng 4 2015 lúc 15:53

a) \(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{60}\right)+...+\frac{1}{70}\)

Nhận xét:

\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\ge\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\ge\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)

\(\frac{1}{31}+...+\frac{1}{60}\ge\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{30}{60}=\frac{1}{2}\)

\(A\ge\frac{1}{2}+\frac{1}{3}+\frac{1}{2}+\frac{1}{61}...+\frac{1}{70}\ge\frac{1}{2}+\frac{1}{3}+\frac{1}{2}=\frac{4}{3}\)

Bình luận (0)
TL
3 tháng 4 2015 lúc 17:08

Sorry ,tất cả dấu lớn hơn hoặc bằng đổi thành dấu > nhé 

Bình luận (0)
WF
29 tháng 3 2017 lúc 20:47

còn câu b

Bình luận (0)
VM
Xem chi tiết
DN
14 tháng 3 2018 lúc 20:19

\(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{70}\)

\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)\)

\(+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)

\(\Rightarrow A< \frac{1}{10}\cdot10+\frac{1}{20}\cdot10+\frac{1}{30}\cdot10+...+\frac{1}{60}\cdot10\)

\(A< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{6}\)

\(A< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\left(\frac{1}{4}+\frac{1}{5}\right)\)

\(A< 2+0,45< 2,5\)

Bình luận (0)
DN
14 tháng 3 2018 lúc 20:29

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)

\(A>\left(\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}\right)+\left(\frac{1}{30}+...+\frac{1}{30}\right)+...+\left(\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\right)\)

\(A>\frac{1}{2}+\frac{1}{3}+..+\frac{1}{7}\)

\(A>\frac{223}{140}>\frac{4}{3}\)

Bình luận (0)
VA
Xem chi tiết
KK
Xem chi tiết
NH
30 tháng 3 2017 lúc 16:59

bài này dài lắm đó bạn batngo mk pít lm phần a nhưng k có thời gian

Bình luận (0)
ML
Xem chi tiết
ML
3 tháng 8 2015 lúc 8:14

Đầu bài chuẩn đấy ạ

 

Bình luận (0)