CMR với mọi số nguyên a thì A=\(a^3-6a^2-7a+12\) luôn chia hết cho 6
CM: A=a3-6a2-7a+12 chia hết cho 6 với mọi a thuộc Z
Chứng minh với mọi n thuộc N thì
M = a3 - 6a2 -7a + 12 chia hết cho 6
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
CM: \(A=a^3-6a^2-7a+12\) chia hết cho 6 với mọi a thuộc Z
\(A=a^3-6a^2-7a+12\)
\(=\left(a^3-a\right)-6a^2-6a+12\)
\(=a\left(a^2-1\right)-6\left(a^2+a-2\right)\)
\(=\left(a-1\right)a\left(a+1\right)-6\left(a^2+a-2\right)\)
Ta thấy \(\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp nên \(\left(a-1\right)a\left(a+1\right)⋮2;3\)
Mà \(ƯCLN\left(2;3\right)=1\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)(1)
Lại có \(6\left(a^2+a-2\right)⋮6\forall a\in Z\)(2)
Từ (1);(2) \(\Rightarrow\left[\left(a-1\right)a\left(a+1\right)-6\left(a^2+a-2\right)\right]⋮6\forall a\in Z\)
Hay \(A⋮6\forall a\in Z\)(đpcm)
CMR với mọi a thuộc số nguyên thì :
a, a3-7a chia hết cho 6
b, a2016-a2014chia hết cho 6
c, \(\frac{a^3}{6}+\frac{a^2}{2}+\frac{a}{3}\)thuộc số nguyên
d, a5-a chia hết cho 30
e, an+5-an+1 chia hết cho 30 (n thuộc số nguyên)
CMR với mọi số nguyên n thì
a, (n^2+3n-1)(n+3)-n^3 +2 chia hết cho 5
b,(6n+1)(n+5)-(3n+5)(2n-1) chia hết cho 2
c,n(n+5)-(n-3)(n+3) luôn chia hết cho 6
Trần Thị Thùy Dung tham khảo đây nha:
Câu hỏi của Cute Baby so good - Toán lớp 6 - Học toán với OnlineMath
............
Trần Thị Thùy DungBài 1)a)Chứng minh rằng: với mọi số nguyên n ta luôn có: \(\left(n^3-n\right)\)chia hết cho 6
b)Với mọi số nguyên n ta luôn có \(\left(n^5-n\right)\)chia hết cho 30
c)cho a,b,c là các số nguyên. CMR \(\left(a^3+b^3+c^3\right)\)chia hết cho 6 <=> (a+b+c) chia hết cho 6
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
Cho đa thức \(A=n^3+3n^2+2n\)
a, CMR: A luôn chia hết cho 6 với mọi số nguyên dương n
b, Tìm giá trị nguyên dương n (n < 10) để A chia hết cho 15
https://olm.vn/hoi-dap/detail/195347678157.html
Chứng tỏ rằng với mọi số nguyên n thì :
A = ( n + 6 ) ( n + 7 ) luôn luôn chia hết cho 2 ;
B = n^2 + n + 3 không chia hết cho 2.
a) Vì ( n+6 ) (n+7) là tích 2 số tự nhiên liên tiếp
=> (n+6)(n+7) chia hết cho 2
b) n^2 + n + 3 = n(n+1) +3
Vì n(n+1) là tích 2 số tự nhiên liên tiếp => n(n+1) chia hết cho 2
mà 3 ko chia hết cho 2
=> n(n+1) +3 ko chia hết cho 2
=>n^2 + n ko chia hết cho 2
chứng minh rằng với mọi số nguyên a
a^3 - a chia hết cho 6
a^3 - 7a chia hết cho 6
a^3 + 11a chia hết cho 6