Những câu hỏi liên quan
NQ
Xem chi tiết
NT
17 tháng 8 2023 lúc 19:32

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

Bình luận (1)
46
Xem chi tiết
H24
11 tháng 1 2023 lúc 11:05

+)ΔABC vuông tại A \(\Rightarrow\widehat{A}=90^o\)

+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(=>90^o+40^o+\widehat{C}=180^o\)

\(=>\widehat{C}=180^o-90^o-40^o=50^o\)

Vậy \(\widehat{C}=50^o\)

------------------------------------------

+)Tam giác ABC vuông tại B \(\Rightarrow\widehat{B}=90^o\)

+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}+\widehat{C}=2.\widehat{C}+\widehat{C}=3.\widehat{C}\)

+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}+90^o+\widehat{C}=180^o\)

\(=>\widehat{A}+\widehat{C}=180^o-90^o\)

\(=>3.\widehat{C}=90^o\)

\(=>\widehat{C}=\dfrac{90^o}{3}=30^o\)

+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}=2.30^o=60^o\)

Vậy: \(\widehat{A}=60^o\) ; \(\widehat{C}=30^o\)

Bình luận (3)
NT
11 tháng 1 2023 lúc 11:02

1: góc C=90-40=50 độ

2: góc A=2/3*90=60 độ

góc C=90-60=30 độ

Bình luận (0)
TM
Xem chi tiết
NT
30 tháng 6 2023 lúc 1:06

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

b: Xét ΔEBC có góc EBC=góc ECB

nên ΔEBC cân tại E

mà EH là đường cao

nên H là trung điểm của BC

=>HB=HC

d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEI=góc HEC

=>ΔEAI=ΔEHC

=>EI=EC>EH

Bình luận (0)
ML
Xem chi tiết
LC
Xem chi tiết
NH
24 tháng 6 2020 lúc 18:53

A B C D E F K

a , BD là phân giác của \(\widehat{ABC}\)

\(\Rightarrow\) \(\widehat{ABC}=\frac{1}{2}.\widehat{ABC}=\frac{1}{2}.40^o=20^o\) 

b , BD là phân giác của \(\widehat{ABC}\) \(\Rightarrow\) \(\widehat{ABD}=\widehat{EBD}\) 

Xét ΔABD và ΔEBD có :

BD chung ; \(\widehat{ABD}\) \(=\) \(\widehat{EBD}\); AB = EB ( gt )

\(\Rightarrow\) ΔABD = ΔEBD ( c.g.c )

\(\Rightarrow\) \(\widehat{BAD}\) \(=\) \(BED\) ( đpcm )

\(\Rightarrow\) \(\widehat{BED}=90^o\)  \(\Rightarrow\) \(DE\)\(BC\) ( đpcm )

c , Xét 2 tam giác vuông : ΔABC và ΔEBF có :

\(\widehat{B}\) chung ; AB = BE ( gt )

\(\Rightarrow\) ΔABC = ΔEBF ( cgv - gn ) ( đpcm )

d , Xét ΔBCF có FE , CA là đường cao , FE ∩ CA tại D

\(\Rightarrow\) D là trực tâm ⇒ BD ⊥ CF

Mà BD ⊥ CK ( gt )

\(\Rightarrow\) C, K, F thẳng hàng ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
CH
Xem chi tiết
BD
Xem chi tiết
CH
1 tháng 10 2023 lúc 19:33

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

Bình luận (9)
CH
1 tháng 10 2023 lúc 20:24

a) Xét \(\Delta ABC\) vuông tại `A`

Ta có: \(BC^2=AB^2+AC^2\) (đl Pytago)

\(\Rightarrow5^2=4^2+AC^2\\ \Rightarrow AC^2=5^2-4^2\\ \Rightarrow AC^2=25-16=9\\ \Rightarrow AC=\sqrt{9}=3cm\) 

Vậy: \(AC=3cm\)

Ta có: \(CosC=\dfrac{AC}{BC}\left(tslg\right)\)

\(\Rightarrow CosC=\dfrac{3}{5}\\ \Rightarrow CosC\approx53^o\)

Vậy: Góc C khoảng \(53^o\)

Ta có: \(TanB=\dfrac{AC}{AB}\left(tslg\right)\)

\(\Rightarrow TanB=\dfrac{3}{4}\\ \Rightarrow TanB\approx37^o\)

Vậy: Góc B khoảng \(37^o\) 

_

b) Xét \(\Delta ABC\) vuông tại `A`

Ta có: \(BC^2=AB^2+AC^2\) (đl Pytago)

\(\Rightarrow10^2=5^2+AC^2\\ \Rightarrow AC^2=10^2-5^2\\\Rightarrow AC^2=100-25=75\\ \Rightarrow AC=\sqrt{75}=5\sqrt{3}cm\)

Vậy: \(AC=5\sqrt{3}cm\)

Ta có: \(SinC=\dfrac{AB}{BC}\left(tslg\right)\)

 \(\Rightarrow SinC=\dfrac{5}{10}\\ \Rightarrow30^o\)

Vậy: Góc C là \(30^o\)

Ta có: \(SinB=\dfrac{AC}{BC}\left(tslg\right)\)

\(\Rightarrow SinB=\dfrac{5\sqrt{3}}{10}\\ \Rightarrow SinB=60^o\)

Vậy: Góc B là \(60^o\).

Bình luận (2)
DT
27 tháng 10 2024 lúc 9:04

AA lai Aa

 

Bình luận (0)
ST
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
BN
23 tháng 3 2016 lúc 20:23

Ta có: <A+<B+<C=180

90+30+<C=180

<c=180-30-90=60

Xét ▲ABC và ▲MNP ta có:

<A=<M=90

<C=<P(=60)

Do đó ▲ABC đồng dạng ▲MNP(g-g)

Bình luận (0)