Những câu hỏi liên quan
NT
Xem chi tiết
NT
Xem chi tiết
KG
Xem chi tiết
NT
2 tháng 8 2023 lúc 17:47

\(A=n^4+2n^3+2n^2+n+7\)

\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)

\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)

\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)

\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)

Ta lại có :

\(\left(n^2+n+1\right)^2-A\)

\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)

\(=n^2+n-6\)

Để \(n^2+n-6>0\)

\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)

Nên A không phải là số chính phương

Xét \(-3\le n\le2\)

Để A là số chính phương

\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)

Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương

\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài

Bình luận (0)
HH
Xem chi tiết
DD
Xem chi tiết
LB
11 tháng 1 2019 lúc 23:09

a) Vì: m là số nguyên tố 

=> m>1

=> 7m>7 và chia hết cho 7 (do 7 chia hết cho 7)

=> Là hợp số 

=> Vô lí

Vậy ko có SNT m nào t/m.

b) Vì: n thuộc N hay n là SNT cx ok nhá

=> n-2<n^2+4

Vì SNT đc phân tích thành 1 và chính nó

=> n-2=1

=> n=3

c) Giải thích tương tự câu b

=> Tìm đc n=2

=> m=1.7=7

d) Phân tích thành nhân tử r lm giống như câu b,c thoy

Bình luận (0)
BH
Xem chi tiết
NH
Xem chi tiết
TP
31 tháng 1 2021 lúc 21:29

Xét n=0 không thỏa mãn.

Xét n≥1

Với n∈N thì:A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2

Mặt khác, xét :

A−(n2+n+2)2=−3n2−3n+3<0 với mọi n≥1

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
LN
2 tháng 8 2023 lúc 16:33

2

Bình luận (0)
DD
Xem chi tiết
TC
11 tháng 1 2019 lúc 22:33

a) Vì 7m là số nguyên tố và 7 là số nguyên tố => m =1

Bình luận (0)
DD
11 tháng 1 2019 lúc 22:34

típ ik các pn

thanks trc

Bình luận (0)