Tìm Min của biểu thức sau :
a) B= \(\frac{x^2-x+1}{x^2+2x+1}\)
b) E= \(\frac{3x^2-8x+6}{x^2-2x+1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải các phương trình Tìm gia trị nhỏ nhất của biểu thức A,B,C và giá trị nhỏ nhất của D,E b) \(3-4x\left(25-2x\right)=8x^2+x-300\) A= \(x^2-4x+1\) B=\(4x^2+4x+11\)
c) \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\) C= \(\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
d) \(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\) D= \(5-8x-x^2\) E) \(4x-x^2+1\)
e) \(x-\frac{2x-5}{5}+\frac{x+8}{6}=7+\frac{x-1}{3}\)
b/ \(3-100x+8x^2=8x^2+x-300\)
\(\Leftrightarrow-101x=-303\)
\(\Rightarrow x=3\)
c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow25x+10-80x+10=24x+12-150\)
\(\Leftrightarrow-79x=-158\)
\(\Rightarrow x=2\)
d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
\(\Leftrightarrow-6x=5\)
\(\Rightarrow x=-\frac{5}{6}\)
e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)
\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)
\(\Leftrightarrow13x=130\)
\(\Rightarrow x=10\)
\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(\Rightarrow A_{min}=-3\) khi \(x=2\)
\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)
\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)
\(\Rightarrow C_{max}=21\) khi \(x=-4\)
\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)
\(\Rightarrow E_{max}=5\) khi \(x=2\)
Tìm GTNN của các biểu thức sau
A=4x^2+4xy+17y^2-8y+1
B=\(\frac{x^2-2}{x^2+2}\)
C=\(\frac{5x^2-10+3}{\left(x-1\right)^2}\)
D=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
A=4x^2=4xy+17y^2-8y+1
B=\(\frac{x^2-2}{x^2+2}\)
C=\(\frac{5x^2-10+3}{\left(x-1\right)^2}\)
D=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
Tìm GTLN của biểu thức sau
C=\(\frac{x^2+5x+7}{x^2+4x+4}\)
D=\(\frac{x^2-2x+2020}{x^2}\)
Bài 1: Qui đồng mẫu các phân thức sau:
a) \(\frac{3}{2x-6};\frac{1}{3x-6}\)
b) \(\frac{1}{2x^2-8x+8};\frac{1}{3\left(x-2\right)};\frac{1}{x^2-x-2}\)
Giúp đỡ e vs mn :((
Cho biểu thức :
E= ( \(\frac{3x-21}{x^2-9}-\frac{5x+1}{x^2-3x}-\frac{x+1}{x^2+3x}\) ) : \(\frac{x}{x^2+3x}-\frac{4x^2-2x}{x^2-x-6}\)
a) Tìm đkxđ
b) Rút gọn biểu thức
c) Tìm x để E \(\in\)Z
1.CHO BIỂU THỨC A=\(\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
a. Tìm x để giá trị của A được xác định. Rút gọn biểu thức A
b. Tìm giá trị nguyến của x để A nhận giá trị nguyên
2. Giaỉ các phương trình sau:
a. \(x\left(x+2\right)\left(x^2+2x+2\right)+1=0\)
b. \(y^2+4^x+2y-2^{x+1}+2=0\)
c. \(\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)
1, Cho biểu thức: A=\(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
a, Rút gọn A
b,Tính giá trị lớn nhất của A
2, Cho biểu thức: B=\(\left(\frac{x-1}{3x-1}-\frac{1}{3x+1}+\frac{8x}{9x^2-1}\right):\left(1-\frac{3x-2}{3x-1}\right)\)
a,Nêu điều kiện xác định và rút gọn B
b,Tính giá trị của x để biểu thức B=\(\frac{6}{5}\)
c,Tìm các giá trị của x để A<1
giúp mình với
a) Đk: x > 0 và x khác +-1
Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)
A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)
A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)
b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)
Vậy MaxA = 1/4 <=> x = 2
Tìm GTNN; GTLN của các biểu thức sau:
a) A= x2 - 4x + 1
b) B= 5 - 8x - x2
c) C= 5x - x2
d) D= ( x - 1 )(x + 3)( x + 2 )( x + 6)
\(E=\frac{1}{x^2+5x+14}\)
f)\(F=\frac{2x^2+4x+10}{x^2+2x+3}\)
\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)
\(=\left(x-2\right)^2-3\) \(\forall x\in Z\)
\(\Rightarrow A_{min}=-3khix=2\)
\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)
dấu = xảy ra khi x-2=0
=> x=2
Vậy MinA=-3 khi x=2
\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)
dấu = xảy ra khi x+4=0
=> x=-4
Vậy MaxB=9 khi x=-4
\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
dấu = xảy ra khi \(x-\frac{5}{2}=0\)
=> x=\(\frac{5}{2}\)
Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)
\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)
\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)
dấu = xảy ra khi \(x+\frac{5}{2}=0\)
=> x\(=-\frac{5}{2}\)
vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất
Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)
Tự trình bày nhé. Gợi ý thôi
\(B=5-8x-x^2\)
\(B=-\left(x^2+2.x.4+4^2\right)+21\)
\(B=-\left(x+4\right)^2+21\le21\forall x\)
\(C=5x-x^2=-\left(x^2-2.x.2,5+2,5^2\right)+6,25=-\left(x-2,5\right)^2+6,25\le6,25\forall x\)
\(D=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(D=\left(x^2+5x\right)^2-36\ge-36\forall x\)
a) Tìm min \(P=2x^2-8x+1\)
b) Tìm max \(Q=-5x^2-4x+1\)
c) Tìm min \(K=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)
d) Tìm min \(R=\frac{3x^2-8x+6}{x^2-2x+1}\)
Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)
Vậy \(P_{min}=-7\) khi x = 2