Nếu 5 < x < 10 và y= x+5 thì giá trị của x +y có thể là số nguyên lớn nhất bao nhiêu ?
A . 18
B . 20
C . 23
D . 24
E . 25
Nếu 5 < x < 10 và y= x+5 thì giá trị của x +y có thể là số nguyên lớn nhất bao nhiêu ?
A . 18
B . 20
C . 23
D . 24
E . 25
đáp án : C23
9 + 14 = 23
c: 23 lầ đáp án cuối cùng của t.
cho k
Câu 33: Cho biết 3𝑥=2𝑦,4𝑦=3𝑧 và 𝑥+𝑦+𝑧=54 thì giá trị của x ,y, z tìm được là
A. x = 12, y = 18, z = 24 B. x = 12, y = 24, z = 18
C. x = 18, y = 24, z = 12 D. x = 24, y = 12, z = 18
Cho ba số x,y,z thỏa mản 6/11x=9/2y=18/5z và -x+z=-196 giá trị tổng x+y+z bằng
a.86 b.294 c-86 d. -294
(Giải cho tui chi tiết nhen tks ạ:33)
\(\dfrac{6}{11}x=\dfrac{18}{5}z\) ⇒ \(\dfrac{18}{33}x=\dfrac{18}{5}z\) ⇒\(\dfrac{x}{33}=\dfrac{z}{5}\)
Áp dụng tc dãy tỉ số bằng nhau ta có \(\dfrac{x}{33}=\dfrac{z}{5}=\dfrac{z-x}{5-33}\) = \(\dfrac{-196}{-28}\)=7
⇒ \(x=7\times33=231\); z = 7\(\times\) 5 = 35;
y = \(\dfrac{6}{11}x:\dfrac{9}{2}=\dfrac{6}{11}\times231:\dfrac{9}{2}\) = 28
\(x+y+z=\) 231+28+35 = 294
Chọn b.294
Bài 3. Tính giá trị của mỗi biểu thức sau:
a) 22 3 25 A x x tại 3 x
b) 25 2 18 B x x tại 4x
c) 3 5 10 C x y tại 5 1
6 2
x ; y
d) 3 22 3 8 5 D x y z tại 3 2 3 x ; y ; z
Cho biết x và y là hai đại lượng tỉ lệ nghịch và khi x = -4 thì y = 18.
a) Tìm hệ số tỉ lệ nghịch của y đối với x.
b) Hãy biểu diễn y theo x.
c) Tính giá trị của y khi x = -8; x = 20
d) Tính giá trị của x khi y = -12; y = 3,6
Giúp mk vs
a) Hệ số tỉ lệ nghịch của y đối với x được tính bằng cách lấy giá trị của y khi x = -4 và chia cho giá trị của x. Ta có: Hệ số tỉ lệ nghịch = y / x = 18 / (-4) = -4.5
b) Để biểu diễn y theo x, ta có thể sử dụng công thức tỉ lệ nghịch: y = k / x Trong đó k là hằng số tỉ lệ. Với giá trị của y khi x = -4, ta có: 18 = k / (-4) Từ đó, ta có k = -72. Vậy biểu diễn y theo x là: y = -72 / x
c) Để tính giá trị của y khi x = -8, ta thay x = -8 vào biểu diễn y theo x: y = -72 / (-8) = 9 Để tính giá trị của y khi x = 20, ta thay x = 20 vào biểu diễn y theo x: y = -72 / 20 = -3.6
d) Để tính giá trị của x khi y = -12, ta thay y = -12 vào biểu diễn y theo x: -12 = -72 / x Từ đó, ta có x = 6 Để tính giá trị của x khi y = 3.6, ta thay y = 3.6 vào biểu diễn y theo x: 3.6 = -72 / x Từ đó, ta có x = -20
Câu 17: Tính tích ƯCLN (20, 24). BCNN(20, 24) có kết quả là:
A. 4 B. 120 C. 1920 D. 480
Câu 18: Nếu x ⋮ 12; x ⋮ 18; x < 90 thì tập hợp các giá trị của x là:
A.{0;36} B.{36;72} C.{0;36;72} D.{0;36;72;108}
Tính giá trị biểu thức:
a) A = a(b + 3) - b(3 + b) tại a = 2003 và b = 1997;
b) B = b 2 -8b- c(8 - b) tại b = 108 và c = -8;
c) C = xy(x + y) - 2x - 2y tại xy = 8 và x + y = 7;
d) D = x 5 (x + 2y)- x 3 y(x + 2y) + x 2 y 2 (x + 2y) tại x = 10 và y = -5.
a) Cách 1; Thay a = 2003; b = 1997 vào biểu thức rồi thực hiện tính toán thu được A = 12000.
Chú ý: Trong biểu thức trên việc thay trực tiếp khiến việc tính toán khó khăn.
Cách 2: Phân tích A = (b + 3)(a - b), thay a = 2003 và b = 1997 vào biểu thức A = 12000.
b) Phân tích B = (b - 8)(b + c), thay = 108 và c = -8 vào biểu thức B = 10000.
c) Với xy = 8; x + y = 7, ta không tìm được giá trị nguyên x, y. Phân tích c = (x + y)(xy - 2), thay xy = 8; x + y = 7 vào biểu thức c = 42.
d) Phân tích D = (x + 2y)( x 5 - x 3 y + x 2 y 2 )
Nhận xét: Với x -10; y = -5 Þ x+ 2y = 0 => D = 0.
4A. Tính giá trị biểu thức:
a) A = a(b + 3) - b(3 + b) tại a = 2003 và b = 1997;
b) B = b2 - 8b- c(8 - b) tại b = 108 và c = -8;
c) C = xy(x + y) - 2x - 2y tại xy = 8 và x + y = 7;
d) D = x5(x + 2y)-x3y(x + 2y) + x2y2(x + 2y) tại x = 10 và y = -5.
4B. Tính giá trị biểu thức:
a) M = t(10 - 4t) - t2(2t - 5) – 2t + 5 tại t = 5 ;
2
b) N = x2(y - 1) - 5x(1 - y) tại x = -20 và y = 1001;
c) P = y2(x2 + y - 1) - mx2 - my+ m tại x = 9 và y = -80;
d) Q = x(x - y)2 -y(x - y)2 + xy2 - x2y tại x - y = 7 và xy = 9.
4A:
a: \(A=a\left(b+3\right)-b\left(b+3\right)\)
\(=\left(b+3\right)\left(a-b\right)\)
\(=2000\cdot6=12000\)
b: \(B=b^2-8b-c\left(8-b\right)\)
\(=b\left(b-8\right)+c\left(b-8\right)\)
\(=\left(b-8\right)\left(b+c\right)\)
\(=100\cdot100=10000\)
a) \(A=a\left(b+3\right)-b\left(3+b\right)\)
\(=a\left(b+3\right)-b\left(b+3\right)\)
\(=\left(a+b\right)\left(b+3\right)\)
Thay a=2003 và b=1997 ta có:
\(A=\left(2003+1997\right)\left(1997+3\right)\)
\(=4000.2000\)
\(=8000000\)
\(4,\\ A=\left(b+3\right)\left(a-b\right)=\left(1997+3\right)\left(2003-1997\right)\\ A=2000\cdot6=12000\\ B=\left(b-8\right)\left(b+c\right)=\left(108-8\right)\left(108-8\right)\\ B=100\cdot100=10000\\ C=\left(x+y\right)\left(xy-2\right)=7\cdot10=70\\ D=\left(x+2y\right)\left(x^5-x^3y+x^2y^2\right)=\left(10-10\right)\left(x^5-x^3y+x^2y^2\right)=0\)
a)x/2=y/3=z/6 và 3x-2y+27=24
b)x/2=y/3=z/4 và x + z =18
c)x/2=y/3=z/-4 và 3x-22=28
d) x+1/3=y+2/4=z+3/5 và x+y+z= 18
Các phần còn lại check lại đề bài.
b) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\Rightarrow x=6\\\frac{y}{3}=3\Rightarrow y=9\\\frac{z}{4}=3\Rightarrow z=12\end{cases}}\)
d) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x+1=6\\y+2=8\\z+3=10\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=6\\z=7\end{cases}}\)