cho hàm số y=-3x2+2x+1 (P)
từ đồ thị (P), tìm x để y\(\ge\)0 ; y<0 ; y\(\le\)-4
Cho hàm số y= -3x2-2x+5. Đồ thị hàm số này có thể được suy ra từ đồ thị hàm số y= -3x2 bằng cách
A. Tịnh tiến parabol y= -3x2 sang trái 1 3 đơn vị, rồi lên trên 16 3 đơn vị.
B. Tịnh tiến parabol y= -3x2 sang phải 1 3 đơn vị, rồi lên trên 16 3 đơn vị.
C. Tịnh tiến parabol y= -3x2 sang trái 1 3 đơn vị, rồi xuống dưới 16 3 đơn vị.
D. Tịnh tiến parabol y= -3x2 sang phải 1 3 đơn vị, rồi xuống dưới 16 3 đơn vị
cho hàm số y=(2m-3)x -1
a) tìm giá trị m để đồ thị hàm số song song với đường thẳng y=-5x+3
b) tìm giá trị m để đồ thị hàm số đi qua A(-1:0)
c) tìm giá trị m để đồ thị hàm số đã cho và các đường thẳng y=1 và y= 2x-5 đồng quy tại 1 điểm
a) Để hàm số y = (2m - 3)x - 1 // với đường thẳng y = -5x + 3
<=> \(\hept{\begin{cases}2m-3=-5\\-1\ne3\end{cases}}\)<=> 2m = -2 <=> m = -1
b) Hàm số y = (2m - 3)x - 1 đi qua điểm A(-1; 0) => x = -1 và y = 0
Do đó: 0 = (2m - 3).(-1) - 1 = 0 <=> 3 - 2m = 1 <=> 2m = 2 <=> m = 1
Vậy để đò thị hàm số đi qua A(-1; 0) <=> m = 0
c) Gọi tọa độ gđ của 3 đường thẳng y = (2m- 3 )x - 1 , y = 1 và y = 2x - 5 là (x0; y0)
Do đó: \(\hept{\begin{cases}y_0=\left(2m-3\right)x_0-1\\y_0=1\\y_0=2x_0-5\end{cases}}\) <=> \(\hept{\begin{cases}1=\left(2m-3\right)x_0-1\\2x_0-5=1\end{cases}}\)
<=> \(\hept{\begin{cases}\left(2m-3\right)x_0=2\\2x_0=6\end{cases}}\) <=> \(\hept{\begin{cases}\left(2m-3\right).3=2\\x_0=3\end{cases}}\) <=> 2m - 3 = 2/3 <=> 2m = 11/3 <=> m = 11/6
Vậy m = 11/6 thì đồ thị hàm số đã cho và các đường thẳng y = 0 và y = 2x - 5 đồng quy tại 1 điểm
Cho hàm số: y = 2x + m -1 a) Tìm m để đồ thị của hàm số đi qua điểm A (2;2) Vẽ đồ thị của hàm số với giá trị của m vừa tìm được b) Tìm m để đồ thị của hàm số y = 2x + m – 1 cắt đồ thị của hàm số y = x + 1 tại điểm nằm trên trục hoành.
Cho hàm số y = (m-1)x + 2 (1)
a) Tìm m để hàm số (1) là hàm số đồng biến;
b) Tìm m để đồ thị hàm số (1) là đường thẳng song song với đường thẳng y = 2x;
c) Tìm m để đồ thị của hàm số (1) đồng quy với hai đường thẳng y-3= 0 và y = x-1
d) Chứng minh đồ thị hàm số (1) luôn đi qua điểm cố định với mọi m.
a: Để hàm số đồng biến thì m-1>0
hay m>1
Số điểm chung của đồ thị hàm số y = x 3 − 3 x 2 − x + 1 và đồ thị hàm số y = − x 2 − 2 x + 1 là
A. 1
B. 0
C. 3
D. 2
Lời giải sau đúng hay sai?
Ví dụ :a/ vẽ đồ Thị hàm số y=-2x
cho x=0=> y=-2x=>y=-2.0=0
cho x=1=>y=-2x=>y=-2.1=-2 . Sau đó vẽ ra
b/ Tìm giá trị m để điểm E(m;2014) thuộc đồ Thị hàm số ttrên
có E(m;2014) =>m=x; 2014=y (1)
thay (1) vào đồ Thị Hàm số ta có y=-2x=>2014=-2m=> m=2014/-2=-1007
dung rui nhung lap luan so sai wa
Đồ thị của hàm số y = − x 3 + 3 x 2 + 2 x − 1 và đồ thị hàm số y = 3 x 2 − 2 x − 1 có tất cả bao nhiêu điểm chung?
A. 0
B. 2
C. 3
D. 1
Đáp án là C
• Phương trình hoành độ giao điểm của hai đồ thị:
Cho hàm số: y = 2x + m -1
a) Tìm m để đồ thị của hàm số đi qua điểm A (2;2)
Vẽ đồ thị của hàm số với giá trị của m vừa tìm được
b) Tìm m để đồ thị của hàm số y = 2x + m – 1 cắt đồ thị của hàm số y = x + 1 tại điểm nằm trên trục hoành.
a, Hàm số y = 2x + m - 1 đi qua điểm A(2;2) nên suy ra x = 2; y =2
Thay vào hàm số, ta có: 2 = 2.2 + m - 1 <=> 2 = 3 + m <=> m= -1
=> hàm số: y = 2x - 2
đồ thị: xác định 2 điểm ( 0 ; -2 ) và ( 1; 0). vẽ đường thẳng đi qua 2 điểm này được đồ thị hàm số cần vẽ.
b, Vì đồ thị của hàm số y = 2x + m-1 cắt đồ thị hàm số y = x+1 tại một điểm nằm trên trục hoành nên m-1 = 1 <=> m = 2
a, Hàm số y = 2x + m - 1 đi qua điểm A(2;2) nên suy ra x = 2; y =2
Thay vào hàm số, ta có: 2 = 2.2 + m - 1 <=> 2 = 3 + m <=> m= -1
=> hàm số: y = 2x - 2
đồ thị: xác định 2 điểm ( 0 ; -2 ) và ( 1; 0). vẽ đường thẳng đi qua 2 điểm này được đồ thị hàm số cần vẽ.
b, Vì đồ thị của hàm số y = 2x + m-1 cắt đồ thị hàm số y = x+1 tại một điểm nằm trên trục hoành nên m-1 = 1 <=> m = 2
chúc bn hok tốt @_@
Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả.
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1).
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2.
Giao điểm của hai đường tiệm cận là I(1; 2).
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)²
m = 1/(x - 1)²
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là
m' = dy/dx = -1/(x - 1)²
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là
mm' = -1
-1/(x - 1)^4 = -1
(x - 1)^4 = 1
(x - 1)² = 1
x - 1 = ±1
x = 0 hay x = 2
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)
Đồ thị của hàm số y = -x3 + 3x2 + 2x – 1 và đồ thị của hàm số y = 3x2 – 2x – 1 có tất cả bao nhiêu điểm chung?
A. 1
B. 3
C. 2
D. 0
Đáp án B.
Số điểm chung là số nghiệm phân biệt của phương trình hoành độ:
-x3 + 3x2 + 2x – 1 = 3x2 – 2x – 1 => x3 – 4x = 0 => x = 0; x = ±2
Phương trình có 3 nghiệm phân biệt nên số điểm chung là 3