M=3x-4/x-3
a,tìm x để M là mẫu số
b,tìm x thuộc z để m thuộc z
1/ ĐKXĐ , rút gọn M
2/ tìm x để M= 2
3/ tìm x để M < 0
4/ tìm x để M > 2
5/ TÌM X THUỘC z ĐỂ M thuộc Z
M = \(\left(\frac{9}{x\left(x^2-9\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
<=> M =
Cho M=\(\frac{11}{3x+2}\)
a) Tìm x thuộc Z để M là dương
b) Tìm x thuộc z để m âm
a ) Nếu M dương thì 3x + 2 = 1 hoặc 11
Nếu 3x + 2 = 1 thì không tồn tại x
Nếu 3x + 2 = 11 thì x = 3
b ) Nếu M âm thì 3x + 2 = -1 hoặc -11
Nếu 3x + 2 = -1 thì x = -1
Nếu 3x + 2 = -11 thì không tồn tại x
điều kiện để M có nghĩa là: \(3x+2\ne0\Leftrightarrow x\ne-\frac{2}{3}\)
a) để M dương:
\(\frac{11}{3x+2}>0\)
mà 11 là số nguyên dương => M > 0 khi và chỉ khi: 3x + 2 > 0 <=> x > -2/3
b) làm tương tự nha bạn => x < -2/3
cho M = 3/x-3 , x thuộc Z a , Tính M khi x= 1 ,x = -2 , x= 3 b, tìm điều kiện của x để M là phân số c, tìm x thuộc Z để M thuộc Z d, tìm x thuộc Z để M có +,giá trị lớn nhất +, giá trị nhỏ nhất
Cho
M=(√x+5)/(√x+1)
a, tìm x thuộc Z để M thuộc Z
b, tìm x thuộc Z để M có giá trị nguyên
M=\(\frac{\sqrt{x}+5}{\sqrt{x}+1}\)= \(\frac{\sqrt{x}+1+4}{\sqrt{x}+1}\)= 1+\(\frac{4}{\sqrt{x}+1}\)
Để M thuộc Z thì \(\frac{4}{\sqrt{x}+1}\) thuộc Z =>\(\sqrt{x}+1\) thuộc Ư(4)={ -1 ; 1 ; -2 ; 2 ; -4; 4 }
\(\sqrt{x}+1\) | -4 | -2 | -1 | 1 | 2 | 4 |
\(\sqrt{x}\) | -5 | -3 | -2 | 0 | 1 | 3 |
x | 25 | 9 | 4 | 0 | 1 | 9 |
KL : Với x thuộc {25 ; 9 ;4 ;0 ;1 } thì M thuộc Z
Chú ý nha bạn : Câu a và câu b như nhau vì m thuộc z <=> m có giá trị nguyên
M=(1-4/x+1 ) . ]1+2(x^2 +x-4)/9-x^2 ]
a, rút gọn M
b, tìm M khi x=-5
c, tìm x thuộc Z để M thuộc Z mik daag cần gấp
a: \(=\dfrac{x+1-4}{x+1}\cdot\dfrac{9-x^2+2x^2+2x-8}{-\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x-3}{-\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x^2+2x+1}{x+1}\)
\(=\dfrac{-x-1}{x+3}\)
b: Khi x=-5 thì \(M=\dfrac{-5-1}{-5+3}=\dfrac{-6}{-2}=3\)
c: Để M nguyên thì -x-1 chia hết cho x+3
=>-x-3+2 chia hết cho x+3
=>\(x+3\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{-2;-4;-5\right\}\)
Bài 1: Tìm a thuộc z để:
(3a^3+8a^2-15a+6)chia hết cho (3a-1)
bài 2: Tìm m để
a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)
b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)
Tìm m để
a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)
b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)
Cho M=X^2-5/x^2-2 (X thuộc Z)
Tìm X Thuộc Z để M thuộc Z
Cho A= 3x+2/x-3 và B= x2+3x-7/x+3.
a, Tính A khi x=1, x=2, x=5/2.
b, Tìm x thuộc Z để A là số nguyên.
c, Tìm x thuộc Z để B là số nguyên.
d, Tìm x thuộc Z để A, B cùng là số nguyên.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
cho M =x^2-5 /x^2-2(x thuộc Z) tìm x để M thuộc Z