cmr : với n thuộc N* thì n^3+n+2 là hợp số
cmr : với n thuộc N* thì n^3+n+2 là hợp số
CMr với mọi n thuộc N* thì n^3+n+2 là hợp số
Xét n chẵn thì n^3+n+2 xẽ là số chẵn mà n thuộc vào N* nên n>0 =>n^3+n+2 >2 nên n^3+n+2 là hợp số.
Xét n lẻ thì n^3 là lẻ nên n^3+n là số chẵn => n^3+n+2 chẵn. Chứng minh như trên.
Có thể bạn ko cần phải chứng minh n^3+n là chẵn trong trường hợp trên nhưng chứng minh thì cũng ko thừa đâu.
CMR: Nếu 2^n - 1 là số nguyên tố thì 2^n + 1 là hợp số ( với n thuộc N và n>2)
cmr: Với n thuộc Z thì n4-n3+3n2-n+6 là hợp số
Câu 1: CMR nếu b là số nguyên tố khác 3 thì số :
A = 3n + 1 + 2009b^2 là hợp số với mọi n thuộc N.
CMR với mọi n thuộc N thì:
A = 22^2n-1 + 3 là hợp số.
CMR: nếu 2^n - 1 là số nguyên tố ( n > 2; n thuộc N ) thì 2^n + 1 là hợp số
Đặt 2^n-1 => n=3
2^n+1 => n=3
Vậy 2^n-1=2^3-1=8-1=7
2^n+1=2^3+1=8+1=9
Cmr: nếu b là số nguyên tố khác 3 thì A=3n+1+2009b là hợp số với n thuộc N, cảm ơn ạ.
B nguyên tố khác 3 nên b=3k+1 hoặc b=3k+2
B=3k+1 thì A =3n+6027k+2010 chia hét cho 3
B=3k+2 thì A=
Cho S là tập hợp các số nguyên dương n, \(n=x^2+3y^2\)với x, y là các số nguyên. CMR:
1) Nếu a,b thuộc S thì ab thuộc S
2) Nếu n thuộc S; n chia hết cho 2 thì n chia hết cho 4 và n/4 thuộc S