Những câu hỏi liên quan
NM
Xem chi tiết
LH
Xem chi tiết
ND
9 tháng 2 2021 lúc 10:50

Đặt \(p^2+pq+q^2=a^2\) \(\left(a\inℤ\right)\)

\(\Leftrightarrow\left(p+q\right)^2-pq=a^2\)

\(\Leftrightarrow\left(p+q\right)^2-a^2=pq\)

\(\Leftrightarrow\left(p+q-a\right)\left(p+q+a\right)=pq\)

Xong chắc xét các TH với p,q là số nguyên tố

Bình luận (0)
 Khách vãng lai đã xóa
HB
Xem chi tiết
CN
Xem chi tiết
H24
13 tháng 3 2018 lúc 19:59

x.x + 3.x.y+y.y

=> x(x+3) + y(y+1)

Bình luận (0)
NQ
13 tháng 3 2018 lúc 20:10

+, Nếu x,y đều khác 3 

=> x và y đều ko chia hết cho 3 

=> x^2 và y^2 đều chia 3 dư 1

=> x^2+y^2 chia 3 dư 2

Mà 3xy chia hết cho 3

=> x^2+3xy+y^2 chia 3 dư 2

=> x^2+3xy+y^2 ko phải số chính phương

=> trong 2 số x,y phải có ít nhất 1 số chia hết cho 3

Gia sử x chia hết cho 3

=> x=3

=> A = x^2+3xy+y^2 = 9+9y+y^2 = y^2+9y+9

Đặt A = k^2 ( k thuộc N )

<=> y^2+9y+9 = k^2

<=> 4y^2+36y+36 = (2k)2

<=> (2y+9)^2 - 45 = (2k)^2

<=> (2y+9)-(2k)^2 = 45

<=> (2y-2k+9).(2y+2k+9) = 45

Đến đó bạn tự làm nha nhưng nhớ kết quả gồm những hoán vị mà bạn tìm đc vì lúc đầu đã giả sử x chia hết cho 3

Tk mk nha

Bình luận (0)
H24
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
AN
12 tháng 6 2018 lúc 13:50

Đặt \(\hept{\begin{cases}2\left(p+1\right)=4x^2\\2\left(p^2+1\right)=4y^2\end{cases}}\)

\(\Rightarrow2\left(x-y\right)\left(x+y\right)=p\left(p-1\right)\)

Làm nốt. Xét từ nhân tử VT chia hết cho từng nhân tử VP là xong

Bình luận (0)
NH
Xem chi tiết