tìm số tự nhiên n để \(n^2+4n+2015\)là số chính phương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương
Tìm số tự nhiên \(n\) để \(n^2+4n+2013\) là số chính phương.
`5.25.2.41.8`
`= 5.50.41.8`
`= 5.400.41`
`= 2000.41`
`= 82000`
Đặt \(n^2+4n+2013=p^2\left(p\in Z\right)\)
\(\Rightarrow n^2+4n+4+2009=p^2\)
\(\Rightarrow\left(n+2\right)^2+2009=p^2\)
\(\Rightarrow p^2-\left(n+2\right)^2=2009\)
\(\Rightarrow\left(p+n+2\right)\left(p-n-2\right)=2009\)
mà \(p+n+2>p-n-2\left(n\in N\right)\) và 2009 là số nguyên tố
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}p+n+2=2009\\p-n-2=1\end{matrix}\right.\\\left\{{}\begin{matrix}p+n+2=-2009\\p-n-2=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=1002\\p=1005\end{matrix}\right.\)
Vậy \(n=1002\) thỏa đề bài
Tìm số tự nhiên \(n\) để \(n^2+4n+2013\) là số chính phương.
\(n^2+4n+2013=\left(n^2+4n+4\right)+2009=k^2\)
\(\Leftrightarrow\left(n+2\right)^2+2009=k^2\)
\(\Rightarrow\left(k-n-2\right)\left(k+n+2\right)=2009\)
\(\Rightarrow k-n-2\) và \(k+n+2\) là ước của 2009
Ta có các TH
\(\left\{{}\begin{matrix}k-n-2=-1\\k+n+2=-2009\end{matrix}\right.\)
Hoặc
\(\left\{{}\begin{matrix}k-n-2=-2009\\k+n+2=-1\end{matrix}\right.\)
Hoặc
\(\left\{{}\begin{matrix}k-n-2=1\\k+n+2=2009\end{matrix}\right.\)
Hoặc
\(\left\{{}\begin{matrix}k-n-2=2009\\k+n+2=1\end{matrix}\right.\)
Giải các hệ trên tìm n
Tìm số tự nhiên n để:
a) n^2 - 4n +7 là số chính phương
b) n^2 - 3n - 1 là số chính phương
Tìm tất cả các số tự nhiên n để A = n^2 + 4n + 11 là số chính phương.
Giả sử \(A=n^2+4n+11\) là số chính phương
đặt \(n^2+4n+11=k^2>0\)
\(\Rightarrow\left(n^2+4n+4\right)+7=k^2\\ \Rightarrow\left(n+2\right)^2-k^2=-7\\ \Rightarrow\left(n-k+2\right)\left(n+k+2\right)=-7\)
Ta có n,k>0⇒n+k+2>0; n-k+2<n+k+2; n-k+2,n+k+2∈Ư(-7)
Ta có bảng:
n-k+2 | -1 | -7 |
n+k+2 | 7 | 1 |
n | 1 | -5(loại) |
k | 4 | 4 |
Vậy n=1
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
cmr 2018^4n+2019^4n+2020^4n ko phải là số chính phương với mọi số nguyên n
tìm số nguyên n sao cho 1955+n và 2014+n là số chính phương
tìm số tự nhiên n sao cho 2^n +9 là số chính phương
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;
tìm số tự nhiên n để \(n^2+4n+2013\)là số chính phương
Đặt n^2+4n+2013 =a^2 ( a thuộc N*) => n^2+4n+4+2009=a^2 => (n+2)^2 +2009=a^2 => 2009= a^2-(n+2)^2 = (a-n-2)(a+n+2) mà a, n thuộc N, N* => a-n-2<a+n+2
(a-n-2)(a+n+2)=1.2009=7.287= 41.49
Bạn tự giải các trường hợp trên tìm được n=1002;138;2
(+) a-n-2=1;a+n+2=2009
=> a+n+2-a+n+2=2009-1
=> 2n+4= 2008 => n= 1002
Giải tương tự các trường hợp trên