Cho a, b, c ∈ Z. Chứng minh rằng: Nếu a < b và b < c thì a < c. (Tính chất bắc cầu của thứ tự)
Cho a,b,c thuộc Z chứng minh rằng nếu a<b và b<c thì a<c.( Tính chất bắc cầu của thứ tự)
Có a<b (1) và b<c (2)
Cộng vế theo vế của (1) và (2) ta được : a+b<b+c
=> a<c ( trừ 2 vế với b)
Nếu a<b và b<c
=> a + b < b + c
Hay a < c ( ĐPCM )
Cho a, b, c thuộc Z. CMR: Nếu a < b và b < c thì a < c. (Tính chất bắc cầu của thứ tự)
Cho \(a,b,c\inℤ\). Chứng minh rằng: Nếu a < b và b < c thì a < c. (Tính chất băc cầu của thứ tự)
Dùng tính chất bắc cầu trong quan hệ thứ tự, chứng tỏ rằng :
a) Một số nguyên âm bao giờ cũng nhỏ hơn một số nguyên dương bất kì.
b) Nếu số nguyên a lớn hơn 2 thì a là số nguyên dương.
c) Nếu số nguyên a nhỏ hơn -1 thì a là số nguyên âm.
a) Vì số nguyên âm luôn bé hơn 0 mà số nguyên dương lại lớn hơn 0
\(\Rightarrow\) Một số nguyên âm bao giờ cũng nhỏ hơn một số nguyên dương bất kì.
b) Vì số nguyên a lớn hơn 2 mà 2 > 0
=> a là số nguyên dương
c) Vì số nguyên a nhỏ hơn -1 mà -1 < 0
=> a là số nguyên âm
Hướng dẫn:
a) a là số nguyên âm, b là số nguyên dương: a < 0 , 0 < b ⇒ a < b .
b) a > 2 , 2 > 0 ⇒ a > 0 ;
c) a < -1 , -1 < 0 ⇒ a < 0 .
Giả sử x = a m ; y = b m (a, b, m ∈ Z; m > 0) và x < y. Hãy chứng minh nếu chọn z = a + b 2 m thì ta có x < z < y.
Hướng dẫn: Sử dụng tính chất: Nếu a, b, c ∈ Z và a < b thì a + c < b + c
Theo đề bài ta có (a, b, m ∈ Z; m > 0).
Quy đồng mẫu số các phân số ta được:
Nhận xét: mẫu số 2m > 0 nên để so sánh x, y, z ta so sánh các tử số 2a, 2b, a+b.
Vì a < b nên a + a < b + a hay 2a < a + b.
Vì a < b nên a + b < b + b hay a + b < 2b.
Vậy ta có 2a < a+b < 2b nên hay x < z < y.
Giả sử x=a/m, y=b/m (a,b,m€Z,m>0) và x<y. Hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y.
Hướng dẫn sử dụng tính chất nếu a,b,c €Z và a<b thì a+c<b+c.
Giả sử x = a/m ; y = b/m (a, b, m thuộc Z, m < 0) và x > y. Hãy chứng tỏ rằng nếu chọn z = (a + b) / 2m thì ta có x < z < y.
Sử dụng tính chất: Nếu a, b, c thuộc Z và a < b thì a + c < b + c
Vì x < y (a/m < b/m) và m > 0 nên a < b .
x = a / m = 2a / 2m ; y = b / m = 2b / 2m ; z = a + b / 2m
a < b => a + a < a + b < b + b <=> 2a < a + b < 2b => 2a / 2m < a + b / 2m < 2b / 2m => x < z < y
Giả sử X = a/m , Y=b/m (a,b,m thuộc Z) và x<y. Hãy chứng tỏ rằng nếu chọn z = a+b/2m thì ta có x<z<y
HD: Sử dụng tính chất: Nếu a,b,c thuộc Z và a<b thì a+c<b+c
ta có x=a/m = 2a/2m ; y= b/m= 2b/2m ; z= (a+b)/2m
lại có x<y <=> a<b (do m>0)
<=> a+a < a+b < b + b
<=> 2a < a+b < 2b
<=> 2a/2m <(a+b)/2m <2b/2m
<=> x<z<y
x =a/m =>. x = 2a/2m
y =b/m => y = 2b/2m
z = (a+b)/2m
theo giả thiết a < b => a + b < b + b => a + b < 2b ........(1)
Ngòa i ra, a < b => a + a < a + b => 2a < a + b ........(2)
Suy ra:
2a < a +b < 2b
Suy ra (chia 2 vế cho 2m) :
2a/2m < (a +b)/2m < 2b
R út gọn ta được : x < z <y
Cho a, b, c, m ∈ Z. Chứng minh rằng nếu a ⋮ m, b ⋮ m và a + b + c ⋮ m thì c ⋮ m
`a vdots m,b vdots m`
`=>a+b vdots m`
Mà `a+b+c vdots m`
`=>a+b+c-(a+b) vdots m`
`=>a+b+c-a-b vdots m`
`=>(a-a)+(b-b)+c vdots m`
`=>0+0+c vdots m`
`=>c vdots m(forall a,b,c in Z)`