Những câu hỏi liên quan
PB
Xem chi tiết
CT
13 tháng 2 2019 lúc 16:49

xtanx + ln cosx + 1 cosx + C

Hướng dẫn: Đặt u = x + sinx, dv = d(tanx)

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 8 2018 lúc 10:18

sin x - x + 1 cos x + 1 3 cos 3 x + C

Hướng dẫn: Đặt u = x + sin 2 x , dv = sinxdx

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 4 2019 lúc 15:46

x 4 4 + x 3 3 ln x - 1 3 + C

Hướng dẫn: Đặt u = x + lnx; dv = x 2 dx

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 8 2019 lúc 7:45

 

 

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 3 2018 lúc 11:31

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 5 2017 lúc 2:30

Chọn C.

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 4 2018 lúc 18:15

Đáp án C

Chú ý

* Theo định nghĩa, nguyên hàm của hàm số f(x) là các hàm số F(x) thõa mãn điều kiện  F ' x = f x , ∀ x ∈ K

* Để tìm họ nguyên hàm của hàm số  f(x), các em chỉ cần tìm một nguyên hàm F(x) của nó

Bình luận (0)
BD
Xem chi tiết
NN
3 tháng 3 2016 lúc 21:50

Đối với cả ba nguyên hàm đã cho, ta sẽ áp dụng liên tiếp hai làn lấy nguyên hàm từng phần và trong hai lần việc chọn hàm \(u=u\left(x\right)\) là tùy ý ( còn \(dv\) là phần còn lại của biểu thức dưới dấu nguyên hàm. Sau phép lấy nguyên hàm từng phần kép đó ta sẽ thu được một phương trình bậc nhất với ẩn là nguyên hàm cần tìm

a) Đặt \(u=e^{2x}\) ,\(dv=\sin3xdx\)

Từ đó \(du=2e^{2x}dx\)   , \(v=\int\sin3xdx=-\frac{1}{3}\cos3xdx\) Do đó : 

\(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{3}\int e^{2x}\cos3xdx\)

\(=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{3}.I'_1\)\(I'_1=\int e^{2x}\cos3xdx\)

Ta áp dụng công thức lấy nguyên hàm từng phần

Đặt \(u=e^{2x}\)  ; \(dv=\cos3xdx\)   Khi đó \(du=2^{2x}dx\)\(v=\frac{1}{3}\sin2x\)

Do đó \(I'_1=\frac{1}{3}e^{2x}\sin3x-\frac{2}{3}\int e^{2x}\sin3xdx\) Như vậy :

\(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{9}e^{2x}\sin3x-\frac{4}{9}\int e^{2x}\sin3xdx\)

\(I_1=\int e^{2x}\sin3xdx\)

Tức là \(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{9}\sin3x-\frac{4}{9}I_1\)

Ta có \(I_1=\frac{3}{13}e^{2x}\left(\frac{2}{3}\sin3x-\cos3x\right)+C\)

Bình luận (0)
NN
3 tháng 3 2016 lúc 22:18

b) Đặt \(u=e^{-x}\) ; \(dv=\cos\frac{x}{2}dx\)

Từ đó :

\(du=-e^{-x}dx\)   ; \(v=\int\cos\frac{x}{2}dx=2\int\cos\frac{x}{2}d\left(\frac{x}{2}\right)=2\sin\frac{x}{2}\)

Do đó :

\(I_2=2e^{-x}\sin\frac{x}{2}+2\int e^{-x}\sin\frac{x}{2}dx\) (b)

\(\int e^{-x}\sin\frac{x}{2}dx=I'_2\)

Ta cần tính \(I'_2\)  Đặt \(u=e^{-x}\)   ; \(dv=\sin\frac{x}{2}dx\)

Từ đó :

\(du=-e^{-x}dx\)   ; \(v=\int\sin\frac{x}{2}dx=-2\cos\frac{x}{2}\)

Do đó :

\(I'_2=-2e^{-x}\cos\frac{x}{2}-2\int e^{-x}\cos\frac{x}{2}dx\)

    \(=-2e^{-x}\cos\frac{x}{2}-2I_2\)

Thế \(I'_2\)   vào (b) ta thu được phương trình bậc nhất với ẩn là \(I_2\)

\(I_2=2e^{-x}\sin\frac{x}{2}+2\left[-2e^{-x}\cos\frac{x}{2}-2I_2\right]\)

hay là

\(5I_2=2e^{-x}\sin\frac{x}{2}-4e^{-x}\cos\frac{x}{2}\) \(\Rightarrow\) \(I_2=\frac{2}{5}e^{-x}\left(\sin\frac{x}{2}-2\cos\frac{x}{2}\right)+C\)

Bình luận (0)
VH
4 tháng 3 2016 lúc 21:57

c) Trước khi áp dụng công thức lấy nguyên hàm từng phần ta thực hiện phép đổi biến \(t=e^x\).

Khi đó : \(I_2=\int t^2\cos tdt=t^2\sin t-2\int t\sin tdt\)

                 \(=t^2\sin t-2\left(-t\cos t+\int\cos tdt\right)\)

                 =\(\left(t^2-2\right)\sin t+2t\cos t+C\)

                 \(=\left(e^{2x}-2\right)\sin e^x+2e^x\cos e^x+C\)

 

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 1 2018 lúc 14:28

Bình luận (0)