Giải và biện luận theo tham số m các phương trình sau
3 x + 2 m = x - m
Bài 1: Giải và biện luận các phương trình sau theo tham số m a) 2mx + 3 = m - x b) m(x - 2) = 3x + 1
b: Để phương trình vô nghiệm thì x-2=0
hay x=2
Để phương trình có nghiệm thì x-2<>0
hay x<>2
Giải và biện luận theo tham số m các phương trình sau
2 x + m = x - 2 m + 2
Phương trình (1) ⇔ x = -3m + 2
Phương trình (2) ⇔ 3x = m - 2 ⇔ x = (m - 2) / 3
Vậy với mọi giá trị của m phương trình có nghiệm là:
x 1 = -3m + 2 và x 2 = (m - 2) / 3
Giải và biện luận các phương trình sau theo tham số m: m(x - 2) = 3x + 1
m(x – 2) = 3x + 1
⇔ mx – 2m = 3x + 1
⇔ mx – 3x = 1 + 2m
⇔ (m – 3).x = 1 + 2m (1)
+ Xét m – 3 ≠ 0 ⇔ m ≠ 3, phương trình (1) có nghiệm duy nhất
+ Xét m – 3 = 0 ⇔ m = 3, pt (1) ⇔ 0x = 7. Phương trình vô nghiệm.
Kết luận:
+ với m = 3, phương trình vô nghiệm
+ với m ≠ 3, phương trình có nghiệm duy nhất
Giải và biện luận theo tham số m các phương trình sau
m x 2 + ( 2 m - 1 ) x + m - 2 = 0
m = 0 phương trình trở thành
-x - 2 = 0 ⇒ x = -2
m ≠ 0 phương trình đã cho là phương trình bậc hai, có Δ = 4m + 1
Với m < -1/4 phương trình vô nghiệm;
Với m ≥ -1/4 nghiệm của phương trình là
Giải và biện luận các phương trình sau theo tham số m: (2m + 1)x - 2m = 3x - 2
(2m + 1)x – 2m = 3x – 2
⇔ (2m + 1)x – 3x = 2m – 2
⇔ (2m + 1 – 3).x = 2m – 2
⇔ (2m – 2).x = 2m – 2 (3)
+ Xét 2m – 2 ≠ 0 ⇔ m ≠ 1, pt (3) có nghiệm duy nhất
+ Xét 2m – 2 = 0 ⇔ m = 1, pt (3) ⇔ 0.x = 0, phương trình có vô số nghiệm.
Kết luận :
+ Với m = 1, phương trình có vô số nghiệm
+ Với m ≠ 1, phương trình có nghiệm duy nhất x = 1.
Giải và biện luận các phương trình sau theo tham số m
a, m(x-m+3)=m(x-2)+6
b, (m+1)x^2 - 2(m-1)x+ m -2=0
a: \(\Leftrightarrow mx-m^2+3m=mx-2m+6\)
\(\Leftrightarrow-m^2+5m-6=0\)
\(\Leftrightarrow\left(m-2\right)\left(m-3\right)=0\)
=>m=2 hoặc ,=3
b: Để phương trình là phương trình bậc hai một ẩn thì m+1<>0
hay m<>-1
\(\text{Δ}=\left(2m-2\right)^2-4\left(m+1\right)\left(m-2\right)\)
\(=4m^2-8m+4-4\left(m^2-m-2\right)\)
\(=4m^2-8m+4-4m^2+4m+8\)
=-4m+12
Để phương trình có hai nghiệm phân biệt thì -4m+12>0
=>-4m>-12
hay m<3
Để phương trình có nghiệm kép thì -4m+12=0
hay m=3
Để phương trình vô nghiệm thì -4m+12<0
hay m>3
Giải và biện luận phương trình sau theo tham số m: m(x – 4) = 5x – 2.
m(x – 4) = 5x – 2 ⇔(m - 5)x = 4m - 2
Nếu m - 5 ≠ 0 ⇔ m ≠ 5 thì phương trình có nghiệm duy nhất
x = (4m - 2)/(m - 5)
Nếu m – 5 = 0 ⇔ m = 5, phương trình trở thành:
0.x = 18 ⇒ phương trình vô nghiệm
Vậy với m ≠ 5 phương trình có nghiệm duy nhất
x = (4m - 2)/(m - 5)
Với m = 5 phương trình vô nghiệm.
Giải và biện luận các phương trình sau theo tham số m
2 m x - 2 + 4 = 3 - m 2 x
Phương trình đã cho tương đương với phương trình
(m - 1)(m + 3)x = 4(m - 1)
Với m ≠ 1 và m ≠ -3 phương trình có nghiệm
Với m = 1 mọi số thực x đều là nghiệm của phương trình;
Với m = -3 phương trình vô nghiệm.
Giải và biện luận bất phương trình sau theo tham số m.
( m - 1 ) . x ≤ 0
Điều kiện của bất phương trình là x ≥ 0
Nếu m ≤ 1 thì m - 1 ≤ 0, bất phương trình đã cho nghiệm đúng với mọi x ≥ 0
Nếu m > 1 thì m – 1 > 0, bất phương trình đã cho tương đương với √x ≤ 0 ⇔ x = 0
Vậy: Nếu m ≤ 1 thì tập nghiệm của bất phương trình là [0; +∞)
Nếu m > 1 thì tập nghiệm của bất phương trình là {0}