Cho ∫ − 2 5 f x d x = 8 và ∫ 5 − 2 g x d x = 3 . Tính I = ∫ − 2 5 f x − 4 g x − 1 d x .
A. I = 3
B. I = -11
C. I = 13
D. I = 27
cho f(x)=ax4+4x2(x2+5)+7x; g(x)=bx3+5x(x2+4x)+c.x+d-8
tìm a,b,c,d để f(x)=g(x)
f(x) = ax4 + 4x4 + 20x2 + 7x = (a + 4)x4 + 20x2 + 7x
g(x) = bx3 + 5x3 + 20x2 + cx + d - 8 = (b+ 5)x3 + 20x2 + cx + d - 8
f(x) = g(x) => a+4 = 0; b+ 5 = 0; c = 7; d - 8 = 0
=> a = -4; b = -5; c = 7; d = 8
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
Viết tập hợp các số nguyên:
a ) – 4 < x < 2 ; c ) − 8 ≤ x ≤ − 5 ; e ) – 7 < x < 0 ; b ) 0 < x ≤ 11 ; d ) − 5 ≤ x < 8 ; f ) 0 ≤ x < 1.
Cho biểu thức f(x)=( |m|-8)x^4+6x^3-(x-1)^2-(x+1)^2 có bao nhiêu giá trị nguyên của m để tam thức đã cho không có giá trị nào của x sao cho dấu của nó dương?
A.4 B. 5 C. 8 D.7
d) x+5 chia hết cho x-2
e) 3x-8 chia hết cho x-4
g) x-3 chia hết cho 3x+1
f) 4x +3 chia hết cho x-2
d) x+5 chia hết cho x-2
=>x-2+7 chia hết cho x-2
=>7 chia hết cho x-2
=>x-2 thuộc Ư(7)={-1;1;-7;7}
=>x thuộc {1;3;-5;9}
e) 3x-8 chia hết cho x-4
.=>3x-12+4 chia hết cho x-4
=>4 chia hết cho x-4
=>x-4 thuộc Ư(4)={-1;1;-2;2;-4;4}
=.> x thuộc {3;5;2;6;0;8}
g) x-3 chia hết cho 3x+1
=>3x-9 chia hết cho 3x+1
=>3x+1-10 chia hết cho 3x+1
=>10 chia hết cho 3x+1
=>3x+1 thuộc Ư(10)={-1;1;-2;2;-5;5;-10;10}
=>3x thuộc {-2;0;-3;1;-6;4;-11;9}
loại trương hợp 3x thuộc {-2;1;4;-11} vì -2;4;1;-11 k chia hết cho 3
=>3x thuộc{0;-3;-6;9}
=>x thuộc {0;-1;-2;3}
f) 4x +3 chia hết cho x-2
=>4x-4+7 chia hết cho x-2
=>7 chia hết cho x-2
=>x-2 thuộc Ư(7)={-1;1;-7;7}
=>x thuộc {1;3;-5;9}
e) 3x-8 chia hết cho x-4
bài 1
a,tìm x biết 2^x =8
b, tìm x biết
căn x =4
căn x=81
(x+1)^2=36
căn x=-3
c, cho x =5 ; y =15 thì hệ số tỉ lệ của y và x làbao nhiều nếu
1, x và y là 2 đại lượng TLT
2, x và y là 2 đại lượng TLN
d, cho hàm số y=f(x) =3x^2 -5. tính f(2); f(-2); f(1/5)
Cho hàm số y = f(x) = x + 3. Khẳng định nào sau đây sai?
A. f(1) = 4 . B. f(0) = 3. C. f(–1) = 4. D. f(5) = 8.
Tìm đa thức f(x) sao cho f(x) chia cho x - 2 dư 1 , f(x) chia cho x + 5 dư 8 , f(x) chia cho x^2 + 3x - 10 được thương là 2x và còn dư .
GỌI THƯƠNG CỦA PHÉP CHIA f(x) cho (x-2) và (x+5) lần lượt là p(x) và Q(x)
theo bài ra ta có
\(\hept{\begin{cases}f._x=\left(x-2\right).p._{\left(x\right)}+1............\left(1\right)\\f._{\left(x\right)}=\left(x+5\right).Q._{\left(x\right)}+8.......\left(2\right)\end{cases}}\)
GỌI THƯƠNG CỦA PHÉP CHIA f(x) cho (x-2)(x+5) [ là x^2+3x-10 phân tích thành] =2x là g(x) và số dư là nhị thức bậc nhất là ax+b
ta có, \(f._{\left(x\right)}=\left(x-2\right)\left(x+5\right).g._{\left(x\right)}+ax+b....................\left(3\right)\)
TỪ (1) VÀ (3) TA CÓ X=2 THÌ \(\hept{\begin{cases}f._2=1\\f_2=2a+b\end{cases}}\)
=> 2a+b=1 =>b=1-2a (4)
TỪ (2) VÀ (3) TA CÓ X=-5 THÌ \(\hept{\begin{cases}f_{\left(-5\right)}=8\\f_{\left(-5\right)}=-5a+b\end{cases}}\)
=> 8=-5a+b =>b=8+5a (5)
TỪ (4) VÀ (5) =>1-2a=8+5a <=> a=-1
=> b=3
vậy số dư là -x+3
vậy đa thức f(x) =(x-2)(x+5) .2x+(-x+3)=\(2x^3+6x^2-21x+3\)
Cho hàm số f(x1 . x2) = f(x1) . f(x2) và f(2)=5 . Tính f(8)
B2: Tìm x
a) | x | = 3,5
b) |1-x |+ 0,73 = 3
c) -5/8 + x = 4/9
d) x.(1/5 + 1/4) - (1/7 + 1/8) =0
e) | x | + -2,7
f) |x + 3/4 | -5 = -2