Những câu hỏi liên quan
PB
Xem chi tiết
CT
8 tháng 7 2019 lúc 3:39

Đáp án A

+)()

Điều kiện:

+)

Đặt:

Đặt

.

Bảng biến thiên

+)

Để phương trình có hai nghiệm phân biệt

Do đó để phương trình có hai nghiệm phân biệt thì phương trìnhcó nghiệm

Từ bảng biến thiên.

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 4 2019 lúc 4:15

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 1 2017 lúc 3:11

Bình luận (0)
TN
Xem chi tiết
NL
20 tháng 1 2021 lúc 19:35

Câu 2 bạn ghi thiếu đề

Câu 1:

\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)

\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)

BPT đã cho vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 10 2017 lúc 15:20

Đáp án B.

Đặt t = log2 x,

khi đó  m + 1 log 2 2   x + 2 log 2   x + m - 2 = 0

⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).

Để phương trình (*) có hai nghiệm phân biệt

Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).

Vì 0 < x1 < 1 < x2 suy ra

Bình luận (0)
TN
Xem chi tiết
NL
13 tháng 12 2020 lúc 18:03

1.

\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)

Khi đó pt đã cho tương đương:

\(x^2+2x+2m=\left(2x+1\right)^2\)

\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)

\(\Leftrightarrow3x^2+2x+1=2m\)

Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)

\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)

\(\Rightarrow P=\dfrac{1}{8}\)

Bình luận (0)
NL
13 tháng 12 2020 lúc 18:03

3.

Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)

Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)

Ta có:

\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)

\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)

\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)

Bình luận (0)
NL
13 tháng 12 2020 lúc 18:03

2.

ĐKXĐ: \(1\le x\le3\)

Pt tương đương:

\(-x^2+4x-3=2m+3x-x^2\)

\(\Leftrightarrow x=2m+3\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(1\le2m+3\le3\)

\(\Leftrightarrow-1\le m\le0\)

\(\Rightarrow a^2+b^2=1\)

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 11 2018 lúc 15:38

Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 2 2017 lúc 8:44

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 7 2019 lúc 4:58

Bình luận (0)