Tập xác định của hàm số y = l n ( x - 2 - x 2 - 3 x - 10 ) là
A. 5 ≤ x ≤ 14
B. 2 < x < 14
C. 2 ≤ x < 14
D. 5 ≤ x < 14
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
Cho hàm số y = ( x - 2 ) - 1 2 Bạn Toán tìm tập xác định của hàm số bằng cách như sau:
Bước 1: Ta có y = 1 ( x - 2 ) 1 2 = 1 x - 2
Bước 2: Hàm số xác định ⇔ x - 2 > 0 ⇔ x > 2
Bước 3: Vậy tập xác định của hàm số là D = ( 2 ; + ∞ )
Lời giải trên của bạn toán đúng hay sai? Nếu sai thì sai ở bước nào?
A. Bước 3
B. Bước 1
C. Đúng
D. Bước 2
Tìm tập xác định của các hàm số sau:
\(\begin{array}{l}a)\;y = \frac{1}{{cosx}}\\b)\;y = tan(x + \frac{\pi }{4})\\c)\;y = \frac{1}{{2 - si{n^2}x}}\end{array}\)
a, ĐK: \(cos\left(x\right)\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\)
Vậy tập xác định của hàm số là: \(D=R\backslash\left\{\dfrac{\pi}{2}+k\pi,k\in Z\right\}\)
b, ĐK: \(cos\left(x+\dfrac{\pi}{4}\right)\ne0\Leftrightarrow x+\dfrac{\pi}{4}\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+k\pi\)
Vậy tập xác định của hàm số là \(D=R\backslash\left\{\dfrac{\pi}{4}+k\pi,k\in Z\right\}\)
c, ĐK: \(2-sin^2\left(x\right)\ne0\Leftrightarrow sin^2\left(x\right)\ne2\)
Vì \(0\le sin^2\left(x\right)\le1\Rightarrow sin^2\left(x\right)\ne2\forall x\)
Vậy tập xác định của hàm số là \(D=R\)
Tìm tập xác định D của hàm số y = x + 2 - x + 3
A.
B.
C. D = R.
D.
Tìm tập xác định D của hàm số y = x + 2 − x + 3
A. D = [ − 3 ; + ∞ )
B. D = [ − 2 ; + ∞ )
C. D = R
D. D = [ 2 ; + ∞ )
Tìm tập xác định của hàm số: \(y = \frac{{\sqrt {x + 2} }}{{x - 3}}\)
Tìm tập xác định của hàm số: \(y = \frac{{\sqrt {x + 2} }}{{x - 3}}\) là \(\left\{ \begin{array}{l}x + 2 \ge 0\\x - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge - 2\\x \ne 3\end{array} \right.\)
Vậy tập xác định của hàm số là \(D = \left[ { - 2; + \infty } \right)\backslash \left\{ 3 \right\}\).
Tập xác định của hàm số y = ( x - 2 ) - 3 là:
A . ( 2 ; + ∞ )
B . ( - ∞ ; 2 )
C . ℝ \ { 2 }
D . ℝ
Chọn C
Điều kiện:
Vậy điều kiện của hàm số là ℝ \ { 2 }
Tập xác định của hàm số y = ( 2 - x ) 3 là
Tập xác định của hàm số y = ( x - 2 ) - 3 là
A. ( 2 ; + ∞ )
B. ( - ∞ ; 2 )
C. R \ {2}
D. R
Tập xác định của hàm số y = ( x - 2 ) - 3 là