Những câu hỏi liên quan
DV
Xem chi tiết
NT
17 tháng 12 2022 lúc 23:22

Đặt a/2019=b/2021=c/2023=k

=>a=2019k; b=2021k; c=2023k

(a-c)^2/4=(2023k-2019k)^2/4=(4k)^2/4=4k^2

(a-b)(b-c)=(2019k-2021k)(2021k-2023k)=4k^2

=>(a-c)^2/4=(a-b)(b-c)

Bình luận (0)
CM
Xem chi tiết
LC
Xem chi tiết
NA
Xem chi tiết
NT
6 tháng 1 2016 lúc 22:15

Ta có:  \(\frac{a}{n+2}=\frac{b}{n+5}=\frac{c}{n+8}\)

  \(\Rightarrow\frac{a}{n+2}=\frac{b}{n+5}=\frac{c}{n+8}=\frac{a-c}{-6}=\frac{b-c}{-3}=\frac{a-b}{-3}\)

  Đặt \(\frac{a-c}{-6}=\frac{b-c}{-3}=\frac{a-b}{-3}=k\)

         \(\Rightarrow a-c=-6k\) ; \(b-c=-3k\) ; \(a-b=-3k\)

Thay vào 2 biểu thức, ta có:

 \(\left(a-c\right)^2=\left(-6k\right)^2=36k^2\) (1)

 \(4\left(a-b\right)\left(b-c\right)=4.\left(-3k\right).\left(-3k\right)=4.\left(-3k\right)^2=4.9k^2=36k^2\) (2)

 Từ (1) và (2), suy ra \(\left(a-c\right)^2=4\left(a-b\right)\left(b-c\right)\)

Bình luận (0)
DH
Xem chi tiết
DQ
Xem chi tiết
DL
25 tháng 2 2022 lúc 21:40

oh no bài thứ nhất là dạng chứng minh cs đúng ko ,

ko thể nào là dạng tìm a,b,c đc-.-

Bình luận (3)
HD
25 tháng 2 2022 lúc 23:05

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)

hay \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+3abc=abc\)

\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

-Xét a + b = 0 => P = 2022^2021

Bạn xét tương tự với b + c = 0 và c + a = 0 dc P = 2022^2021 nhé

Bình luận (2)
HL
27 tháng 1 2023 lúc 22:16

a+bab+a+bc(a+b+c)=0a+bab+a+bc(a+b+c)=0

(a+b)[ab+bc+ca+c2abc(a+b+c)]=0(a+b)[ab+bc+ca+c2abc(a+b+c)]=0

(a+b)(b+c)(c+a)=0(a+b)(b+c)(c+a)=0

  a=−b

  b=−c

  c=−a

Thay vào P từng cái rồi tính tiếp nhé

Bình luận (0)
TT
Xem chi tiết
AH
26 tháng 6 2023 lúc 18:37

Lời giải:

Ta có:

$\frac{a}{b}=\frac{c}{d}=\frac{4c}{4d}=\frac{a+4c}{b+4d}$ (theo TCDTSBN)

$\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}$ (theo TCDTSBN)

$\Rightarrow \frac{a+4c}{b+4d}=\frac{2a-3c}{2b-3d}$

$\Rightarrow (a+4c)(2b-3d)=(2a-3c)(b+4d)$ (đpcm)

Bình luận (0)
TN
Xem chi tiết
DU
Xem chi tiết