Những câu hỏi liên quan
PB
Xem chi tiết
CT
7 tháng 7 2018 lúc 5:22

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 1 2020 lúc 2:37

Đáp án A

Bình luận (0)
LV
Xem chi tiết
AH
7 tháng 4 2023 lúc 9:49

Lời giải:

$1440=2^5.3^2.5$

Để $k=n!\vdots 1440$ thì $n!\vdots 2^5$; $n!\vdots 3^2; n!\vdots 5$

Để $n!\vdots 3^2; 5$ thì $n\geq 6(1)$

Để $n!\vdots 2^5$. Để ý $2=2^1, 4=2^2, 6=2.3, 8=2^3$. Để $n!\vdots 2^5$ thì $n\geq 8(2)$

Từ $(1); (2)$ suy ra $n\geq 8$. Giá tri nhỏ nhất của $n$ có thể là $8$

Bình luận (0)
NT
7 tháng 4 2023 lúc 9:06

Chọn B

Bình luận (0)
NH
Xem chi tiết
GD
12 tháng 3 2021 lúc 19:06

Ta có:

\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)

Từ gt \(\Rightarrow n,k\ge2\)

Ta có:

\(\left\{{}\begin{matrix}n^3-n-1>1;n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n^3-n-1=p^r\\n^2+n-1=p^s\end{matrix}\right.\) trong đó \(\left\{{}\begin{matrix}r\ge s>0\\r+s=k\end{matrix}\right.\)

\(\Rightarrow n^3-n-1⋮n^2+n-1\)

\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)

\(\Rightarrow n-2⋮n^2+n-1\)       (1)

Mặt khác:

\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)

\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)

Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\left\{{}\begin{matrix}p=5\\k=2\end{matrix}\right.\)

Vậy bộ số (n,k,p)=(2,2,5)

Bình luận (0)
TH
12 tháng 3 2021 lúc 18:34

\(...\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\).

Do đó \(\left\{{}\begin{matrix}n^2+n-1=p^v\\n^3-n-1=p^u\end{matrix}\right.\left(v,u\in N;v+u=k\right)\).

+) Với n = 2 ta có \(p^k=25=5^2\Leftrightarrow p=5;k=2\) 

+) Với n > 2 ta có \(n^3-n-1>n^2+n-1\Rightarrow v>u\Rightarrow n^3-n-1⋮n^2+n-1\)

\(\Rightarrow\left(n^2+n-1\right)\left(n-1\right)+n-2⋮n^2+n-1\)

\(\Rightarrow n-2⋮n^2+n-1\)

\(\Rightarrow\left(n-2\right)\left(n+3\right)⋮n^2+n-1\)

\(\Rightarrow6⋮n^2+n-1\).

Không tồn tại n > 2 thoả mãn

Vậy...

 

 

 

Bình luận (0)
NH
Xem chi tiết
DQ
12 tháng 3 2021 lúc 18:30

Ta có: 

\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)

Từ giả thiết \(\Rightarrow n,k\ge2\)

Ta có:

\(\hept{\begin{cases}n^3-n-1>1,n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}n^3-n-1=p^r\\n^2+n-1=p^s\end{cases}}\) trong đó \(\hept{\begin{cases}r\ge s\ge0\\r+s=k\end{cases}}\)

\(\Rightarrow n^3-n-1⋮n^2+n-1\)

\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)

\(\Rightarrow n-2⋮n^2+n-1\)          (1)

Mặt khác :

\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)

\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\)        (2)

Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\hept{\begin{cases}p=5\\k=2\end{cases}}\)

Vậy bộ số cần tìm là (n,k,p)=(2,2,5)

Bình luận (0)
 Khách vãng lai đã xóa
NO
Xem chi tiết
ML
2 tháng 4 2021 lúc 9:31

program hoc24;

n: string[20];

k,i,t,d,d1: byte;

code: integer;

begin

write('Nhap so K: '); readln(k);

write('Nhap so nguyen N: '); readln(n);

d:=0; d1:=0;

 for i:=1 to k do

begin

val(n[i],t,code);

if t mod 2=0 then d:=d+1 else d1:=d1+1;

end;

writeln('Co ',d,' chu so chan');

write('Co ',d1,' chu so le');

readln

end.

Bình luận (0)
H24
Xem chi tiết
DD
29 tháng 6 2023 lúc 15:36

Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.

2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m

Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11

Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.

Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.

Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …

Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.

  
Bình luận (1)
UH
Xem chi tiết
VD
24 tháng 8 2021 lúc 21:42
Uses crt;

Var i,k,n,bk,tong: integer;

a: array[1..1000] of integer;

Begin

write('Nhap K: '); readln(k);

write('Nhap N: '); readln(n);

for i:=1 to n do

begin

write('A[',i,']='); readln(a[i]);

end;

{câu a}

For i:=1 to n do 

if a[i]=k then bk:=bk+1;

writeln('Co so phan tu bang k la:',k);

{câu b}

For i:=1 to n do 

if a[i]=k then

begin

write(i,' ');

tong:=tong+a[i];

end;

write('. Tong la:',tong);

readln

end.

Bình luận (0)
PH
31 tháng 8 2021 lúc 20:21

uses crt;
var k,n,tong,d,i:longint;a:array[1..1000]of longint;
begin
 clrscr;
  write('n=');readln(n);
  write('k=');readln(k);
  for i:=1 to n do
        begin
         write('a[',i,']=');readln(a[i]);
        end;
  d:=0;
  for i:=1 to n do if(a[i]=k)then inc(d);
  writeln('so phan tu bang voi:',k,' la:',d);
  write('cac so co vi tri bang voi:',k,' la:');
  tong:=0;
  for i:=1 to n do if(a[i]=k)then
        begin
         write(i,' ');
         tong:=tong+a[i];
        end;
  write('tong cua cac so bang voi:',k,' la:',tong);
 readln;
end.

Bình luận (0)
UH
24 tháng 8 2021 lúc 9:10

giúp với pleaseeeeee

 

Bình luận (0)
TZ
Xem chi tiết
ML
30 tháng 10 2021 lúc 21:16

Input: N, dãy số nguyên a1,a2,...,aN và k

Output: Số phần tử là bội của k

Thuật toán liệt kê:

Bước 1: Nhập N, dãy số nguyên a1,a2,...,aN và k

Bước 2: d←0; i←1;

Bước 3: Nếu i>N thì in ra d và kết thúc

Bước 4: Nếu ai chia hết cho k thì d←d+1; 

Bước 5: i←i+1; quay lại bước 3

Bình luận (0)